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NON-DIFFUSIVE N + 2 DEGREE PETROV—GALERKIN
METHODS FOR TWO-DIMENSIONAL TRANSIENT
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SUMMARY

A new non-diffusive Petrov—Galerkin type finite element method which uses test functions two polynomial
degrees higher than the trial functions is developed for the transient convection dominated transport
equation in two dimensions. The scheme uses bilinear quadrilateral finite elements for the spatial discretiz-
ation and Crank—Nicolson finite differencing for the time integration. The standard product extension of
very successful one-dimensional N + 2 degree upwinding functions to two dimensions is ineflective for
general 2-D flow problems, especially at higher Courant numbers where cross-derivative truncation terms
become important, Therefore effective N + 2 depree test functions are developed through an analysis by
which the truncation error terms in the discrete nodal equation are eliminated up to fifth order. The new
scheme is very effective for general 2-D flows over a wide Courant number range and eliminates the
troublesome cross-derivative truncation terms. The scheme is simple and robust in that the upwinding
coefficients are readily defined and only dependent on Courant number. Numerical examples illustrate the
excellent behaviour of the new scheme. : :

INTRODUCTION

In a recent paper, Westerink and Shea’! studied a new Petrov-Galerkin type finite clement
method for the solution of convection dominated transient transport problems in one dimension.
This class of methods, originally proposed by Dick,? uses Lagrangian polynomials as basis
functions and modified weighting functions which are two polynomial degrees higher than the
basis functions. This new Petrov—Galerkin method has been designated as the N 4 2 degree
Petrov—Galerkin method, N being the degree of the polynomial used as the basis function. The
work by Westerink and Shea' showed that N 4 2 degree upwinded weighting functions used in
conjunction with linear and quadratic trial functions dramatically improve the solutions for
linear problems by effectively eliminating the space and especially time truncation errors.
Comparisons with the results of standard Galerkin and traditional N + 1 degree Petrov-
Galerkin methods indicate the superiority of N + 2 Petrov—Galerkin solutions which achieve
perfect amplitude and substantially enhanced phase behaviour over a wide Courant number
range. The purpose of this-study is to extend the N + 2 degree Petrov-Galerkin method to
two-dimensional transient convection dominated problems,

It is well known that the extension of successful one-dimensional solution techniques to
two-dimensional finite elements poses considerable difficulties owing to the wide variety of
additional cross terms which are present in a general two-dimensional problem. Classical N + 1
degree upwinding methods have been extended to two dimensions by simply taking the product
of the one-dimensional upwind biased weighting functions.*# It has been shown that such
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straightforward extensions generally lead to artificial crosswind diffusion, where excessive numer-
ical diffusion is unnecessarily introduced in the direction perpendicular to the flow. The stream-
line upwind approach of Hughes and Brooks® and of Kelly et al.% which applies an optimal
amount of artificial diffusion only in the direction of the flow, and the streamline upwinded
Petrov—Galerkin scheme of Hughes and Brooks’ and Brooks and Hughes,® which modify the test
functions by a perturbation dependent on the velocity field and the derivative of the basis
functions, successfully eliminate this problem. Another remedy against crosswind diffusion is the
implementation of N + 1 degree upwinding by weighting the upwinding coefficients on a given
eglement side in proportion to the average direction cosines of the velocity vectors for that side. In
this way, the artificial diffusion matrix becomes invariant with respect to the rotation of the
co-ordinate system and hence any artificial crosswind diffusion is eliminated.

For time dependent problems, solely limiting the added artificial diffusion to the flow direction
and improving the spatial discretization properties is found to be ineffective at improving the
phase lag and numerical dispersion which stem from the additional complexities introduced by
difficult time discretizations. Many recent works on the transient transport equation have
therefore focused on improving the time discretization characteristics in conjunction with the use
of effective spatial discretization methods. A number of successful schemes have emerged which
competently handle general two-dimensional transient convection dominated problems. The
Taylor—Galerkin method of Donea et al.? improves the time integration through Taylor series
expanding the time derivative term such that second and third time derivatives are included.
A recent technique developed by Yu and Heinrich!®!! utilizes space-time finite elements geared
towards improving the time integration. Tezduyar and Hughes'? and Tezduyar and Ganjoo!?
have modified the perturbation terms for the streamline upwind/Petrov—Galerkin method so that
they enhance the temporal discretization characteristics. Carey and Jiang'* recently introduced
a very promising least squares finite element scheme which has some similarities to both the
Taylor—-Galerkin method and streamline upwinding.

The straightforward extension of N + 2 degree upwinding to two dimensicns by taking the
product of the one-dimensional N + 2 degree biased weighting functions has not been successful
for general two-dimensional flows.? It appears that significant eross-derivative truncation terms
are not effectively eliminated. In particular, when the temporal discretization is difficult, this
straightlorward product exiension ol N 4 2 degree upwinding does not eliminate the large
oscillations which follow directly behind-a distribution transversely crossing a grid. Therefore, an
N + 2 degree upwinding scheme must be developed in two dimensions so that the cross-
derivative truncation terms as well as uni-directional truncation terms can be effectively elimin-
ated. This is done in the [ollowing sections by developing discretized equations and the truncation
error for the most general complete third degree two-dimensional biased weighting function for
bilinear quadrilateral basis functions and examining how the various two-dimensional upwinding
terms can be used to effectively eliminate both uni-directional and cross type truncation errors.
A detailed truncation analysis for the transient pure convection equation is presented in the
Appendix. :

GOVERNING EQUATIONS AND DISCRETIZATION DEVELOPMENT

We consider the time dependent linear two-dimensional convection—diffusion equation over
a simply connected open region £ with boundary I':

66 b ap af_ ap\. af. ap\ . a( a4\, K (. a
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where ¢ is the transported quantity, « and v are the velocities in x and y directions and D; i,j'S are
the physical diffusion coefficients in the respective directions. The spatial diseretization of
equation (1) is accomplished through the development of a standard weak weighted residual
formulation. Weighted integration of equation (1) with the flux boundary error term and
application of Green's theorem yields

g dpaW dpaw
J‘J‘n {( ar +u e + v ﬁy) W (Dxxa-g + Dyy'é;a—y
shaw _ apaw
p, 2280  p "M an_ | 3 -
+ D, 3y ox + D, x 3y )}d frﬁq" Wdl'y =0 (2)

where g, is the prescribed boundary flux and W is the weighting function which will be
thoroughly discussed in the next section.
The solution over the region Q is approximated as

4= 3 600 @

where ¢ ,(¢) are undetermined, time dependent coefficients, and the i;(x, ¥} are the basis or shape
functions associated with the nodes.

Substituting the approximating series (3) into the weak weighted residual formulation, (2), and
some algebraic manipulation leads to the following system of spatially discretized ordinary
differential equations:

L
M=F+ K =P @

where M, the mass matrix, is given as

M= 3 || waer (5)

clem

and K is the stiffness matrix, which can be expressed as
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and P is the boundary flux vector which equals
= j Wig,dly (7)

The time discretization of equation (4) can be mlplemented through the use of
a Crank—Nicolson finite difference scheme to obtain

A
[M_+%K“+l]¢“+l=[M_EKn:I¢’ + Pn+l +;Pn (E)

where n + 1 and n represent the future and current time levels, and A represents the time step,
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GENERAL WEIGHTING FUNCTION DEVELOPMENT

We now consider (1) for the case with no dlffusmn We define standard bilinear Lagrange
peolynomials as the trial functions:

Yo&m =21 =801 —n)
go(&m =201+ 51 —n) o)
Ya(&m) =2(1 + &1 +n)
Yol =21 -0 +1)
We bias these trial functions such that the weighting functions are defined as
WL, n) = il n) — Fil, n) (10)

where F (¢, n) is the most general modifying function which is a complete cubic polynomial in two
dimensions;

Fil&ny=a;y +a;5€ +a;39 + 31.452 + ai.sé'? + ai,ﬁ'lz + a9 &+ a;g &y
+ a:,gé'iz + G; 10 e+ ai.u‘fjﬂ + at,lzéz'lz -t 43 5773
4 a0+ a8+ a6 80 (11

wherea; ,(i=1,...,4andm =1, ..., 16} are unknown coefficients which must be determined.
Noting that F,{&7) must be equal to zero at the element nodes, we eliminate four unknowns
and after some algebraic manipulation we get

Fi&m = —a el = &) —a6(1 — %) — a78(1 — &%) — aygn(l ~ &%)
— a5 (1 — 12) — g so(L — 1) — @445 EN(1 — £2)
— a5, 15(L = &%) = a3 801 — 7°) — g, 1, (1 — &%)
— a;,,57(1 ~ 52'12) —a;166n7(1 — &%) (12)

In equation (12), terms a; , and g, ¢ are the one-dimensional N + 1 degree terms. Terms with
coefficients a, g, a, ¢ and a; ,, simply correspond to cross product N + 1 degree terms. For the
standard product extension of one-dimensional N + 1 degree upwinding functions to two
dimensions, the weighting functions for bilinear elements equal

W}_(é: }T) = lrlll('f! 'T) - (%ax - _lsaaxay)(l - ‘:2) - (% lﬁaxay}(l - )

+ 3 (1 — &) + o, é(1 — %) — Troa, (1 — &29%) (13a)
W& m) = ¥, (& m + (o, — Teea W1 — &%) — (o, + vz, ) (1 — n?)

— g1 — &2) — o &(1 — ) + Tz (1 — &%) (13b)
Wi n) = (& m) + @Bu, + Toeaer, W1 — 62) + (3o, + Toea)(1 — 17)

+ gl — &)+ de,f(l — n?) — Teea (1 — é’lﬂz} (13c)
W& m) = Pra(En) — @e, + fom, (1 — &) + Bo, — Too, (1 — 77}

— Fo(t — &) — F,&(1 — %) + Teee(l — E%%) (13d)

where o, and «, respectively represent the N + 1 degree upwinding coefficients for the horizontal
and vertical element sides. When these coefficients are set equal to the product of the standard
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uni-directional N + 1 degree upwinding coefficient and the average direction cosines of the
velocity vector for that side, it can be shown that the artificial diffusion matrix is invariant with
respect to the rotation of the co-ordinate system and hence no artificial crosswind diffusion is
introduced. We designate this scheme as N + 1/SPE (Standard Product Extension} upwinding.

We also note that the terms in equation (12) with coefficients g, ; and 4, ,, are the N + 2 degree
biasing terms which have been shown to improve the solution drastically for one-dimensional
cases. Terms with coefficients a, ,,, 4; ;3 and g, ;¢ correspond to cross product N + 2 degree
terms. The standard product extension of one-dimensional N + 2 degree upwinding functions to
two dimensions leads to the following set of weighting functions:

W (&om) = Uy (&) + F5BL(L — E) + 5B, — n®) — (5B, — EB.B,)n(l — &)

— (5B, — 8B.B,)en(1 — v*) — BB.B,&n(l — &) (14a)
W& m) = o (Eom) + 58601 — &%) — TsB(L — ) + (B, — EaBB,)n(1 — &%)

+ (f5B, — BBB,)5n(1 — n?) + B3R B, En(1 — &%) (14b)
W& m) = Yra(Em) — FeBe&(l — &) —TsByn(l — n°) — (5. — &2BB)en(l — &7)

— (5B, — BB.B)en(1 — n*) — BB, in(l — &) (14c)
Wellon) = Wallon) — T8BE(L — &%) + faB,n(l — 7°) + (58, — BB, ) en(l — &%)

+ (5B, — 83.B,)n(l — 1) + B2B.B, in(1 — E%n?) (14d)

where f8, and f, respectively represent the N 4 2 degree upwinding coefficients of the horizontal
and vertical element sides. We shall designate this as N + 2/SPE upwinding. As was indicated
earlier, N + 2/SPE upwinding is entirely unsuccessful in treating general two-dimensional prob-
lems with difficult temporal discretizations. This can readily be demonstrated using truncation
error analysis. o

We now proceed by examining how N + 2 degree upwinding can be effectively implemented in
two dimensions such that it successfully eliminates the troublesome cross-derivative truncation
terms which appear at large Courant numbers. We start by discarding all the one-dimensional
and cross product terms in equation (12) associated with N + 1 degree upwinding. It can be
shown by truncation error analysis that, as in the one-dimensional case, N + ! degree upwinding
terms cannot solely eliminate the truncation error beyond third order unless all individual sets of
N + 1 degree terms are set to zero. With this consideration, our general N +2 upwinded
weighting function reduces to

W(E ) = (& n) + a4 5(1 — 52) 4 a; yon(l — )+ ag,, En(l — E2} 4+ a; 45 En(l — )
+ ;14 &1 — fz'?z) + a; 5 n(t — fz'lz) + 016 en(l — ‘52'11) (15)

Using the shape functions given in equation (9) and the weighting function given in equation (15),
the element matrices can easily be formed in terms of unknown coefficients a; ,,. By assembling
these element matrices and substituting into equation (8}, global equations for any non-boundary
node (i, j) are obtained. Since these equations in this very general form are relatively long they will
not be reproduced here. A truncation error analysis for the nodal point difference equation can be
performed by Taylor series expanding the equation about node (i, j). We then consider the
original form of our governing equation (1) and perform sequential substitutions and/or take
spatial derivatives such that we express all time derivative terms with corresponding spatial
derivative terms. Substituting these expressions into the Taylor series expanded form of the nodal
difference equation and grouping of terms with equal order spatial derivative of ¢ yields the
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general form of truncation error for the N + 2 upwinded finite element scheme with bilinear
shape functions. The development of the new N + 2 upwinded weighting f{unction is then
accomplished by eliminating the truncation errors associated with each term in the Taylor
expansion up.to fifth order derivatives by assigning the appropriate values to the variable
coefficients in equation (15). The details of this analysis for the pure convection equation are given
in the Appendix. After defining the new N + 2 degree upwinding parameters such that

f.=2C | | (16a)
g,=2C; (16b)
ﬁ‘:y = Cxcy (160)

where C, = uA/h and C, = vA/k, in which A is the time step and / and k are spatial discretization
sizes, the final form of the weighting functions can be reproduced as

WL (E ) = Uy (&) + S 0.800 — &) + fefn(l — p) + B3f,an(l — &%) (17a)
WalE,n) = ¥2(E ) — T5h.E0 — &) + Fafyn(l — ) + BER a0l — E2) (1)
W& ) = Y&, m) — TsfE( — &) — fabn(l — ) + B2 f on(t — &%) (170
WalEm) = Y& + 5B 80 — ) — 5Bl — v?) + B f,enl — E9%)  (17d)

The coefficients as defined in (16) lead to a scheme which is formally fourth order accurate for all
Courant numbers. It is noted that, for the case of uni-directional flow, this set of waighting
functions reduces to its one-dimensional counterpart discussed by Westerink and Shea.! How-
ever, the addition of the sixth degree polynomial with coefficient ﬁ,q will now allow for the very
effective elimination of the troublesome cross-derivative truncation terms. We will refer to our
newly developed scheme as N + 2/TUSC (third order uni-directional and sixth order cross term
polynomial weighting) upwinding.

As was the case for the one-dimensional scheme, the x and y uni-directional N + 2/TUSC
upwinding coefficients, . and ;5";., must be increased somewhat over the truncation error analysis
values given by equations {16a) and (16b). Based on one-dimensional Fourier analysis, it can be
shown that perfect phase propagation characteristics result for a given wavelength, 4, when the
upwinding coefficient is selected by computing the smallest positive root of

B(i/h, C) = - 5 -8 cos(ﬁ}) —
2[005( n) — 1:| Alh

12C sm( )
+l:cos(g.£€)il:] - (18
Sm(iﬂ)

where C = uA/h. For the longest wavelengths, 4/h = oo, equation (18) reduces to f§ = 2C?, which
corresponds to the truncation error analysis result. For the shortest resolvable wavelengths,
A/h = 2, equation (18) reduces to f = 2. Based on our examination of phase portraits, f should be
computed using A/h values somewhere between 35 and 60. This § range significantly improves
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the phase curve for short and intermediate wavelengths, while not deteriorating the phase
properties of somewhat longer wavelengths. For two-dimensional schemes, fi, and [31, should be
computed using equation (18), substituting for C by C, and C, respectively and keeping the 4/h
range the same as for the one-dimensional scheme. The cross upwinding coefficient does not
require any adjustments from the truncation analysis result and ﬁ,y values given by equation (16c)
lead to optimal performance characteristics. We note that, for general two-dimensional flows, the
N + 2/TUSC upwinding scheme exhibits perfect amplitude behaviour and a remarkably im-
proved phase portrait compared to the standard Bubnov-Galerkin solution. The extent of the
phase improvement increases as Courant number increases up to C = 1.

For two-dimensional flows, unlike one-dimensional flows, the N + 2/TUSC Petrov-Galerkin
scheme as given in equation {17) modifies the elemental mass, convection and diffusion matrices.
The change in the elemental mass matrix is due to both the uni-directional and cross upwinding
terms and results in more weighting at the nodes in the direction of the fiow. In the standard
Bubnov—Galerkin solution however, the mass accumulation appears on the node associated with
the elemental equation. The modification in the convection matrix is due to the uni-directional
N + 2/TUSC upwinding terms and occurs at the nodes in the direction of the flow only. The
Cross ﬁxy term has no contribution to the convection matrix. For the diffusion matrix, the
unidirectional N + 2/TUSC terms do not make any contribution whereas the cross fi,, term
does. Numerical experimentation with diffusive problems suggests that the cross term contribu-~
tion to the diffusion matrix may have an adverse effect on the solution, especially at high Courant
numbers. Therefore, we recommend setting the value of cross upwinding coefficients to zero when
differentiation of the upwind weighting functions is implemented (i.e. not allowing any cross term
upwinding contribution to affect the diffusion matrix). -

NUMERICAL EXAMPLES

The performance of our newly developed N 4 2/TUSC scheme is tested using a transversely
translating concentration hill problem (e.g. Donea et al.,” Baker and Soliman!?) and a rotating
concentration hill problem (e.g. Baptista et al.'®). For the first problem, results are compared for
the standard Bubnov-Galerkin, traditional N + 1/SPE and N + 2/SPE degree Petrov-Galerkin
schemes as given by equations (13) and (14) and our newly developed N -+ 2/TUSC
Petrov—Galerkin method. For the latter problem, comparisons are shown only between the
standard Bubnov—Galerkin and N + 2/TUSC Petrov-Galerkin schemes. The optimal values for
the coefficients used in the N + 1/SPE schemes are taken from the ranges specified by Westerink
and Shea! and extended to two dimensions by multiplying them with the average direction
cosines of velocity on the various element sides, as explained earlier. Numerical experimentation
was used to determine the optimal N + 2/SPE coefficient values. The uni-directional
N + 2/TUSC coefficients, fi, and B;., were computed using the extended two-dimensional version
of equation (18) using various /h values which bracket the optimal solution. The cross
N + 2/TUSC upwinding coefficient, ﬁ,y, was always computed using equation {16c). The error
criteria used to assess performance are listed in Table L. Error criteria include overall integral
error (E1), relative peak damping (E2), the relative size of the maximum spurious oscillation (E3)
and the phase shift of the distribution peak (E4).

The first test problem consists of a square domain with 35 x 35 nodes with a node to node
distance equal to 200. A Gaussian type concentration distribution with standard deviation
& = 264 located in the left rear corner is given as the initial condition. Zero upstream boundary
conditions are applied in both directions. The ambient flow field is defined through uniform
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Table L Error criteria for example problems!$
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Error EI: Integral measure of the overall error

Error E3: Point measure of the maximum spurious oscillation in the numerical solution

Ez=

El=

mit)

mu(t) - ¢num(t)
¢ mnl(r)

Piat,neg )

' 1z
I:j [6™(x3,1) — (5,3, )1 dx dy]

Error E2: Point measure of the artificial damping of the numerical solution

Error E4; Point measure of the phase shift introduced in the numerical solution

where r_,

E4 =

max

mnx(r]

rex (t) — prum,

. is the distance travelled

Note: For the exact solutions all errors equal zero

Table II. Summary table for éxamp]e problems and corresponding errors

Weighting Weighting
Case-run Fig [unction factor El E2 E3 E4

1-1 2 Standard — 0000290 (221455 (117088 0041667
1-2 3  N+1/SPE o =uo,=0350 0000257 0329017  (-040485 0000000
-3 4 N+4+2SPE  f,=f,=0500 0000141 0062912 0038754  O-000000
1-4 —  N+42/TUSC @, =f,= 0500 (4/h=375) 0000149 0059427 (026930  0-000000
1-5 5  N+2/TUSC f,=f,=0450(1/h=400) 0000122 0059371 (-019103 0000000
1-6 —  N+2TUSC f,=f,=0375(4/h=450) 0000100 0068968 (-028173  0-000000
2-1 6  Standard — 0000760 0354743 0324367 0041667
2-2 7 N+1SPE o =g, =1414 0-000599  0-526294 0129309 0041667
2-3 8 N+2/SPE §,= [J = 1-300 0000626 0442237 0-237918  0-000000
2-4 —  N+2/TUSC f = ﬁ“ = 1411 (/h =375 0000056 0037373 0012011 0000000
2-5 9 N+2TUSC f, = ﬁ = 1393 (J/h =400) 0000055 0041468 0012339 0000000
2-6 —  N+2TUSC B, =§,=1367(4/h=450) 0000060 0048679 0012375 0000000
3-1 11 Standard — 0000710 0330723 0267363 0014469
3-2 —  N+2/TUSC f,+f,=varies (I/h=375) 0000201 0068202 (040297  0-000000
3-3 12 N+2/TUSC 4.+ ,q, = varies (A/h =400) 0O000IB1 0072286 0054349 0000000
3-4 -~ N+2TUSC §,#f, =varies (3/h=4-50) 0000172 0088640 0079011 0000000
4-1 14  Standard — 0000255 0-130486 0-202846  (-014469
4-2 —  N+2/TUSC B #pB =vares(3/h=375 0000062 0007898 0004751  0-000000
4-3 15 N +2/TUSC B_s B, =varies {4/ =400) 0000054 0004681 0003093  (-000000
4-4 —  N+2/TUSC J,# B, = varies (/h =4-50) 0000045 0003362 0001941  (-000000
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steady velocities u = v = 0-5in the x and y dircetions and zero physical diffusion is specified such
that the concentration hill moves diagonally across the domain in pure convection. The exact
solution at t = 9600 is shown in Figure 1.

Case 1 solves the defined transverse flow problem using relatively low Courant numbers such
that C, = 0-24 and C, = 0-24. Error criteria values for this case are summarized in Table I1. The
standard Bubnov—-Galerkin solution, Case 1—1 shown in Figure 2, exhibits a considerable drop in
peak amplitude and trailing oscillations which propagate in two trains, each perpendicular to the
grid lines. In addition there is a slight phase lag of the plume itself. These errors are entirely caused
by numerical dispersion. Application of N - 1/SPE upwinding (with a, = o, =035, which
corresponds to « = 0-5), Case 1-2 shown in Figure 3, eliminates the phase lag and trailing
perpendicular oscillations which arise mainly from the spatial discretization, but also causes the
peak to be further depressed due to numerical damping. Traditional application of N + 2/SPE
upwinding, Case 1-3 shown in Figure 4, shows a much improved solution as compared to the
standard Bubnov-Galerkin solution. Here the optimal upwinding coefficients were found to be
B = B, =0350. Peak and overall accuracy have substantially improved, although reduced trail-
ing oscillations caused by the spatial discretization still remain. Case 1-5 shown in Figure
5 indicates that further improvements in the quality of the solution are achieved when the
N + 2/TUSC scheme specified with equation (17) is applied. However, N + 2/TUSC is only
slightly superior to N + 2/SPE for this low Courant number case, as is indicated by the error
criteria in Table IL. This is due to the fact that cross-derivative type truncation terms arc not very
important at low Courant numbers. The N + 2/TUSC uni-directional upwinding parameters
used for Case 1-5 (f, = ﬁ}, = 0-450) were computed using equation (18) with C, = C, = 0-24 and
J/h = 40, which gives the best overall solution when considering all the error criteria. However,
sensitivity to the f, and B‘y values within the range 4/h = 3-5 — 6 is not dramatic. We note that the
f3. and B, values within this overall 2/h range are about 2to 4 times larger than values given by the
truncation error analysis prediction, equations (16a) and (16b). Numerical experimentation
indicates that equation (16c) for the coefficient EIJ, of the sixth degree cross term, determined from
truncation error analysis, does give an optimum value. Finally, we note that the optimal

uni-directional coefficients for both the N + 2/SPE and N + 2/TUSC schemes are nearly the
same.
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Figure 1. Analytical solution of a 2-D Gaussian plume travelling diagonally across the grid in pure convection at
= 9600 {0 = 264, u = v = 0-j)
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Figure 2. Cnse I-1: Standard Bubnov-Galerkin solution of a 2-D Gaussian plume in pure convection at ¢ = 960 for the
low Courant number flow {5 = 264, C, = C,=024)

Figure 3. Case 1-2: N + 1/SPE Petrov-Gualerkin {z, = 2, = 0-35) solution of a 2-D Gaussian plume in pure convection at
¢ = 9600 for the low Courant number flow (¢ = 264, C_ = C, =024}

Case 2 is identical to the problem defined for Case 1 with Courant number increased to
C. = C, =08 Again error criteria values are listed in Table II. Case 2-1 in Figure 6 shows the
standard Bubnov-Galerkin solution at this higher Courant number. The oscillations now trail
the plume in a direction parallel to the flow. Furthermore, the plume is severely depressed and
exhibits a pronounced phase lag, again due to numerical dispersion. These problems are
primarily temporal difficulties and the associated cross-derivative type truncation terms are now
important. As in the one-dimensional case, N + 1/SPE upwinding with a value of x, = a, =141
{which corresponds to & = 2+0) reduces the wiggles at the expense of severe over-damping of the
solution, as is shown for Case 2-2 in Figure 7. Similarly, N + 2/SPE upwinding, using upwinding
coefficients fi, = f, = 1-30, is not capable of eliminating the cross-truncation error terms which
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Figure 5. Case 1-5: N + 2/TUSC Petrav—Galerkin (fi, = §, = 045, fi,, = 0:0576) selution of 2 2-D Gaussian plume in
pure convection at t = 3600 for the low Courant number flow (g = 264, C, = €, = 0-24)

introduce excessive phase errors into the solution, as is manifested by the trailing wiggles and the
considerable drop in the peak for Case 2-3 shown in Figure 8. When our N + 2/TUSC
upwinding scheme is used, the solution improves remarkably, as is shown for Case 2-5 in Figure
9. The peak amplitude shows only 4 per cent error and only very smail trailing wiggles remain in
the solution (1 per cent). The values for the uni-directional upwinding coefficients were computed
using A/ = 4-0 and are equal to f, = f, = 1-39. These optimal coefficient values are now only
slightly higher than those predicted by truncation error analysis. The optimal value for the cross

term coefficient, f,, = 0-8 x 08, again remains the same as that determined by the truncation
error analysis,
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Figure 7. Case 2-% N + 1/SPE Petrov—Galerkin (x, = n, = 1-41}solution of a 2-D Gaussian plume in pure convection at
t = 9600 for the high Courant number flow (0 =264, C. = C, =080

The second test problem considers a Gaussian distribution transported in pure convection
in a two-dimensional rotational fiow field. The domain is identical to the square domain used for
the transversely translating cone problem but a homogeneous essential boundary condition is
now imposed everywhere on I'.!® The velocity field is given by u = — w(y — 3400) and
v = wx — 3400), where the origin of the co-ordinate system is located at the rear left corner of the
domain. The constant angular velocity o is taken as 2x/6000 and the initial plume is located at
xo = 1200 and y, = 3400. The time step is set to A = 60, and thus the Courant number ranges
between 0-0 and 107 over the domain and equals 0-70 at the distribution peak. Numerical
solutions after one complete rotation are presented.

Case 3 solves the defined rotating flow problem for a narrow Gaussian distribution with
o = 264, The initial condition and final solution are shown in Figure 10. Error criteria values are
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Figure 8. Case 2-3: N + 2/SPE Petrov~Galerkin (f, = f, = 1-30) solution of 1 2-ID Gaussian plume in pure convection
al t = 9600 for the high Courant number flow (6 =264, C. = C, = 0-80)

Figure 9. Cose 2-5: N + 2/TUSC Petrav—Galerkin (f, = ,ﬁ, =139, E,, = {64) solution of a 2-D Gaussian plume in pure
convection at 1 = 9600 for the high Courant number low (& = 264, €, = C, = 0-80)

listed in Table IT. As is shown for Case 3-1 in Figure 11, the standard Bubnov-Galerkin scheme
exhibits severe peak deterioration, very large wiggles trailing the distribution and a phase lag for
the distribution itsell. The use of the N + 2/TUSC method, Case 3-3 shown in Figure 12,
dramatically improves the quality of the solution. The peak error has been reduced to 7 per cent
while the largest dip has been reduced to 5 per cent. The uni-directional upwinding coefficients ﬁx
and f, were computed using A/h = 4-0. As is noted {rom Table II, a slightly improved solution, at
least in terms of peak and dip errors, is obtained by using fi, and B, values which correspond to
a lower A/h value. \

Case 4 solves the same rotating flow problem for a wider Gaussian distribution with ¢ = 400.
The initial condition and final solution after one complete rotation are shown in Figure 13, Error
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Figure 10. Tnitlal condition and analytical solution after one complete rotation for a rotating 2-D Gaussian plume in pure
convection {7 = 264)

' T e,

NGz

KN,
g T bl ;!2?‘=.,-“1 oY,

Figure 11. Case 3-1: Standard Bubnov-Galerkin solution of a rotating 2-D Gaussian plume alter one complete rotation
{¢ = 264 and Courant number al the peak is 0-70)

criteria values are again summarized in Table IL Case 4-1 shown in Figure 14 indicates that the
standard Bubnov—-Galerkin solution for this wider and therefore easier problem is still quite poor,
particularly the oscillation which follows the distribution is relatively large. The use of
N + 2/TUSC upwinding, Case 4-3 shown in Figure 15, leads to an almost perfect solution. Peak
and dip errors are in fact less than 0-5 per cent. The f#_and ,B"y coefficients were computed using
Jfh = 40, although using somewhat higher i/h values leads to a slightly better solution.

The behaviour of the new N + 2/TUSC Petrov-Galerkin scheme with physical diffusion has
been tested by considering a simplified form of equation (I) with no physical cross diffusion terms.
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Figure 12. Case 3% N + 2/TUSC Petrov—Galerkin solution of 4 rotating 2-D Gaussian plume afier one complete
rotation [¢ = 264 and Courant number at the peak is 0-70). {fi, and i, are calculated {rom equation (18} with A/ = 40,
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Figure 13. Initial condition and enalytical solution after one complete rolation for a rotating 2-I> Guussian plume in pure
convection (o = 4(K)

The improvement in the time/space discretization characteristics of the new scheme for the
convective part of the equation together with the physical diffusion leads to almost perfect
solutions. The optimal upwinding coefficients appear quite insensitive to Peclet number for
convection dominated flows, and a near optimum solution is always achieved for f, and ﬁy
corresponding to A/h = 4 and f,, specified using the truncation analysis prediction.
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Figure 15, Case 4-3: N 4 2/TUSC Petrov-Galerkin solution of a rotating 2-D Gaussian plume after one complete
rotation {7 = 400 and Courant number at the pesk is §-70). (f, and §, are calculated from equation ([8) with fh = 40,

Xy C.\'CJ
CONCLUSIONS

We have successfully developed a higher order upwinded finite element scheme for convection
dominated transport problems. In general, the N + 2/TUSC upwinding scheme leads to very
accurate solutions owing to the excellent phase properties and perfect analytical damping of the
scheme. The scheme is robust (i.e. f,, Ey and ﬁxy are simply defined and a function of essentially
local Courant number only), very accurate and simple. The two cubic terms with coefficients 8,
and ﬁy are one-dimensional terms and the third term is a sixth order cross term which enables
very effective control in eliminating the cross-derivative truncation terms for general two-
dimensional flows. It has to be noted that other terms in the general biasing function (12) do not
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allow this type of control. For this reason, straightforward extensions of upwinded
Petrov—-Galerkin schemes into two dimensions by simply iaking the product of two one-
dimensional terms {i.e. N 4- 2/SPE) have been unsatisfactory at high Courant numbers.

The N 4 2/TUSC uni-directional upwinding coefficients are well predicted as a function of
Courant number and 4/h using equation {18), which is based on Fourier analysis. The optimal A,
and ﬂ} appear only weakly dependent on the wave number content of the distribution. Thus the
value i/t = 4 leads to a near optimal solution for a wide variety of flow fields, distribution sizes
and Peclet numbers. Therefore for all practical purposes, §. and ﬂ can be universally defined as
being only Courant number dependent. The cross upwinding coeﬂicmnt, ﬁxy, is faithfully pre-
dicted by truncation error analysis and is solely Courant number dependent.

The N + 2/TUSC scheme leads to improved solutions over the entire Courant number range
up to C = 1-0. The effectiveness of the N + 2/TUSC scheme increases as Courant number
increases. Nonetheless, the example problems indicate that, even at low Courant numbers such as
C = (24, substantial improvement over the standard Bubnov-Galerkin solution results when
N 4 2/TUSC upwinding is applied. Higher Courant number cases result in even better
N + 2/TUSC solutions. Thus the N + 2/TUSC scheme’s convergence curve with respect to time
integration (i.e. error vs. C) has a negative slope (as opposed to standard Bubnov-Galerkin which
has a positive slope) and always lies below the convergence curve for the standard
Bubnov-Galerkin method.

It can be concluded that the newly developed N + 2/TUSC upwinded Petrov-Galerkin
scheme is capable of handling convection dominated transient transport problems with consider-
able accuracy, The method enhances the solutions for a broad range of Courant numbers without
requiring excessive programing or computational effort. Finally, the scheme is quite economical
in that simple bilinear elements are used and in that relatively large time steps (with C =~ 0(1)) are
allowed.
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APPENDIX

Derivation of the optimal form of the N + 2 degree biasing function in two dimensions through
truncation error analysis

The nodal difference equation expanded in Taylor series and reorganized in terms of equal
order spatial derivatives of ¢ is used to analyse the truncation error in the proposed scheme in
order to assess the optimal values of the variable coefficients in the welghtmg function which is
given in its general form in equation (13).

The first five terms of the truncation error are evaluated as

il d
= {0}({:‘ + {0}‘3%’ + {0}£ + { —_ A’Izk(zzs(ﬂl 14 3 14 + 3 14 + ty, 14)

3¢

2
+ﬁ(ﬂm + 83,7+ a37+ ﬂ-z.v))}g
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30
{-‘ UAJJAI(ZZS(UI 15+ 82,15+ 83,15+ a1 5)
3¢
dy*
where / and & are the node to node distances in the x and y directions respectively.

It is obvious from equation (A1) that all truncation error terms associated with second order
spatial derivatives can be easily eliminated by setting

2 .
+ ﬁ(‘h.w +a3,14 + 43,10 + 34.10))} (A1)

Eﬂm Zanu Zﬂ.m—Zaa.s—O (A2)

With the conditions given in {(A2) the remaining terms in the truncation error can be expressed
as

A3 15
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— vAIPk? 550(‘71 16 = 0216 — 8316 T Gy,16) + 180(01 11— 830 — 35y T 8g0)
e 1 .
+ uvA=h*? ﬁ(al'” + a4 A8 = G 4) + %(al‘T + @y — 34— 44)
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+ E(al.lﬁ 315~ 0315+ d45) + E(amo — Q3,9 — 3,10 + 84,10
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225(“1 16 T 2,16 + 8316+ Q4,36) + %(al.ll + @1y 0301+ a414)
1 04(;!)
+ola sty tay s +ay5) s + HOT. (A3)
90 gx*dy

_ At this point we will assume that the truncation error associated with the third order
derivatives in x and y directions will be eliminated by solely using the uni-directional 4, , and 4;
terms. This assures compatibility between the one- and two-dimensional .schemes. Therefore,
from the first two terms of the truncation error expression we get the lollowing conditions:

Su*A?
{51.7 —fyq—f37+845)= "—)'“hT (A4)
(1,14 — 314 — 3,15+ g14) =0 (A5)
SuPA?
(41,10 + @2,10 = 83,10 = 4, 10)—2 2 (A6)

(@115 + 8y 45— 03,45 —a415) =0 (A7)

In order to eliminate the truncation error associated with the third order cross derivatives we
must have

4 ¢ 1 & 12 uvA?
75 2, e g 2, s +gg L G = g (A%)

1 1

It has to be noted that, since a;, , and &,  are functions of &, and 4, | ; and a; , , are functions of v*
only, we do not expect them to contribute to the elimination of these particular truncation ercor
terms, Therefore we set them all equal to zero.

(@104 + 0300 — 8304 — 04,4) =0 (A9)

(ay 74837 — 3, —ay,)=0 (A10)
(a5 — 83,5~ a315+a415) 0 (AT}
(2,10 — 82,10 — 23,10 *+ 4,10 )"—“0 (A12}

The conditions given in equations (A2) and (A4) to {A12) eliminate all the truncation errors up to
fourth order derivatives. Following this procedure and after the subsequent substitution of the
equations into the remaining terms of truncation error given in equation (A3), it is possible to
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eliminate all the truncation error terms up to fifth order derivatives provided that the following
conditions are satisfied.
From &*¢/dx*dy terms:

(@105 — 15+ 83,15 —84,5) =0 (A13)
(@1,10 = 82,10 + 83,10 = Ga,10) = 0 (Al14)
335(8, 16 + 2,16 — T3,16 — Qa,16) + THO(@y 11 a0y B3 yy = Gayp)
+ Tholay,13 + 8503 — 83,3 — 84,43) =0 {A15)
and from 9*¢/dxdy> terms:
(ay,14 — 2,44 + 83,14 — 84,,4) =10 (A16)
(ay,7 =~ 83,7 + @37 —84,9) ={_) (A17)
%(51,15 — a3 — Q3,16 + ag,16) + 515(“1.11 —ty 11 — O3+ a4.11)
_ +95(2),13 — 82,13 — G3,13 + 84,13) =0 (A18)
Solving equations (A4) to (A18) simultaneously together with (A2) we get
Q7= —fyy= —ay; =07 =3C; (A19)
10 = 32,10 — %10 " 9107 3C3 (A20)
1,14 = Og,14 = 0314 = g4 =0 (A21)
1,15 =8p,35=f3,5=t4,5=0 (A22)

where C, = uA/h and C, = vA/k are the elemental Courant numbers in the x and y directions
respectively.

A major problem is encountered in evaluating the values of the coefficients a; |, a; 3 and g; |6
in that we lack an adequate number of constraints in order to determine these coefficients
algebraically, Therefore, through a series of numerical experiments the relative contribution of
each of these terms was assessed. These experiments showed that when terms from equation (15)
with non-zero g;,, and a; ;y values are included, the resulting scheme does not improve the
solution. With this in mind, we decided to consider only the g, 4 terms which represent the
complete sixth degree cross terms in our generalized weighting function. At this point we assume
that all a; ¢ values are equal to each other and hence from equation (AB) we get

—_ — — — 2323
Q)16 = 03,16 = 3,16 = 4,16 = 64 Cxcy : (A23)

Using equations (15), (A19), (A20) and (A23) leads to the weighting functions for N + 2 upwinded
Petrov-Galerkin type finite element schemes in two dimensions, as given in equation (17).
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