Lecture No. 5

Local Truncation Error:

Local Truncation error represents the difference between an exact differential
equation and its FD representation at a point in space and time. Local truncation

error provides a basis for comparing local accuracies of various difference

schemes.
Example
Compute the local truncation error of the classical explicit difference approximately
ion
to:
oU U
—_—— =10
0t y2

FD representation is (explicit: forward in time; central in space):

Uy jp1 = Wiy Wio1, T2t

i+1j _ o
Af (Ax)?

-

This difference equation is satisfied for the numerical solution u only! It is not sat-

isfied for the exact solution.

The truncation error is represented by (where U = exact solution):

r = U je1= Uy Uica,;= 20U+ Uiy
b J At  (Ax)2

We can work out the truncation error in more detail by Taylor series expanding:

AUl 1, L9%Ul 1, 39U
= Uyy+lagy) +53@075 +5 (A0 =
b 'y Ly

U, +...

i+1,f
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_ au| 1, .,3%U 3a3U
Ui_y,j = Ui,j—Axax +5 (Ax) pea (Ax) 3 +...
L] iJ
U , 02U 1, 30U
Uij+1 = Ui,j'*'Afw” (AI) Y +2 (A1) =3 + o
’ b i, j

Substituting in and re-arranging (by order of Ax, At) we have:

oU 9%U 1' FRUN 1, L(9%U
= (5 axz). .+§A’("é?]. -17(57)
LJ

LJ
U °U
rhe0r(2Y) -kt (Z)s.
i, J '
However since U is the exact solutionjit identically satisfies the original p.d.e. at all &2

points (i, j) . Thus:

-(BU 02U
— =0
dt 242 )ij

Substituting into 7, j leads to:

(1, 90%U 1 U 1,,.20°0. 1 405U
T, (im—-—atz 5 (8%) " ) + (6 (A>3 =355 (A= )i |
iJ +J

=3

T, ;= 0(AD) +0(Ax) 2

. L : oU _ 2*U o
« Thus the classical explicit solution to 57 = —-a—2 is O (At) accurate in time
X : :

and O (Ax)? accurate in space.
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However we can make this method more accurate. We note from the p.d.e. that
U U ‘

. Substituting into the leading term in T, It

aF  oxt
YT (%AI%I.—% (Ax)"‘z%j)i j+O(Ar)2+0 (Ax)*
=
Y
i T %[%;gl’j(f“—é(&x) 2) +0(An%+0(An)* ®

Fwelet At = % (Ax) 2 then:

T = 0(AD)%2+0(AR)4

¥

2U
» Thus we can make the classical explicit solution to %irj = %—2
' X

rate in time and O (Ax)* accurate in space if we select a very special relation-

0 (AN ? accu-

ship between Ax and At.

» In this special case, the leading order space and time truncation errors can-

cel!
« Recall that for stability we required Az < % (Ax)? which was already making

the time step too small. Therefore this is not a practical technique to enhance the

o
#;‘pg, ./*'g:;‘*‘"«

7 peaty £ s
| N

5_,3 AX

order of accuracy in this particular case!



Accuracy of the C-N solutions to Linear Differential Equations

Let us formally investigate the time accuracy of the C-N scheme in conjunction
with any linear operator in space using a truncation error analysis.

Let:

= L@
where L (@4 = linear differential operator in space

Applying the C-N discretization in time:

U, 1 —U;
P = L (g p) +L (0]

At

Let U = the exact solution at the nodes. Then © 7 the local truncation error equals:

U_}+1

- = At [L(U+1) +L(Uj)]

Now we Taylor series expand for U i1 about time level j:

oU; A9a2U APB’-‘
Uj —U+Atat 5 atz 8:3 +H.0.T.

Substituting for U jHinto our FD expression:
| 2 g2 333U,
(Ar) *U; i (Ap3d U’-—U.
a 2 37 6 a7

1 (Ar)zaZU (A)32°U
2[L[U+Ata 5 at2+ Y ) L(U))

T. = 1 [U +Ar

i~ At
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Since the operator L (U) is linear we have:

1 (An20%U;  (An39°Y
"’j"m(ma:* 2 37 "6 ar3j_
1 (At )2 az
i(L(U)-i—Ata (L) + tz(L(U))

Ar)3 9°
CoZawy +La)

Now grouping terms and pulling out derivatives we have:

oU; At 9 [oU
i [ar L(U)] 28:[7)7_1‘((])]
Af? 92
+ 6 at[at ZL(U)]
Ar RE

t57 ¥ [ 5 2L(U)}+H.O.T.

Thus the local truncation error may be represented by

Ar d aU; (At)282 oU
T = 23:{ o L(U)} V) at[ar 2L(U)]+H'0'T'

However since the first term identically satisfies the original p.d.e. it must equal

zero!

(Ar)282 oU,
YT 12 aﬂ[ - L(U)]
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« Therefore C-N applied to linear differential operators always results in 2nd
order time accuracy. |

« This analysis also shows that the accuracy to which each term in the p.d.e. is
evaluated does not necessarily reflect the actual accuracy of the scheme. The ac-
tual accuracy is dependent on exactly how both the time and space discretiza-
tions were implemented. In addition both space and time truncation errors from

any of the terms in the p.d.e. can and do interact.

Consistency (or Compatlbﬂl;y) of a Numerical Discretization

A consistent numerical scheme is one which converges to the salutzan of the

p.d.e. being discretized. Thus as mesh length tends to zero, truncation terms also

tend to zero.

Example of a Consistent Solution
For the explicit solution to the diffusion equation, the truncation error equals:

1, 9*U 1 284
FAt—7 — 3 (A0S

LT Ly - +0(AD) 2+0(ax)?

Thusas Ax—>0and At >0 = 1:”.—>0

Inconsistent/Incompatible Scheme:

For an inconsistent numerical scheme, the numerical solution converges to the

solution of a different p.d.e.!



Example of a Conditionally Consistent Solution

Consider:
U 3*U
532 =0
b oox
discretized central in time and central in space as:

Upjr1 Wi j—1 Ui+l -0
2At Ax2 .
The truncation error equals:

i
YT 2AT Al

TS expanding for U; ;.1 - U; ;1> Uis1,j and U;_, ; and then substituting and

re-arranging, we have:

_ (U *U N (At)283U_(Ax)284U
W\ e2) U R 12 o

24t U  (An29%U (Aﬁ 4 4]
201 0| =, (Ax)%, (A
F O T er l,,-+ A (497 (40

The first term in 7, j satisfies the original p.d.e. Thus:

20-1
6 Bt3 12 ax4 + ( )(AI)Z Jt + (AX)2 8[2

o ((At)283U;(Ax)za4U 24t U (A:)ZaZU) .
L
ij

A3
.+o(m, (Ax) 4, (Ar)‘*)

o In this case we do not necessarily have T, i~ Qas Ax >0 and At — 0.
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+ Therefore, we must consider how fast Ax and Ar decrease to zero relative to

each other.

Case 1: Let At = rAx where r = positive constant:

rZ(Ax)Za?:U (Ax)Za4U 261 2raU+ Zaz
“WiT 6 7 12 34 *( ) Az ot 32

+0(7Ax, (AD)%, (rAx)?)

as Ax— 0

2r BU 232
+

-291
( ) Ax or?

= When 6 ;t , the first term blows up.

. Wheri 0= ‘,12, the second term makes numerical solution consistent with p.d.e.:

oU 82U+ ,02U

ot o e

» Therefore this numerical scheme and selection of At and Ax are inconsistent

with our originally stated p.d.e.

Case 2: Let At = r(Ax)2

2 (A0 U (Ax)29%U 2 (AX)23U 2 (Ax)4 22U
T T 6 ar 12 3t +(20-1) (Ax) 2 ot + Ax: 0P
> (Ax) 4 4 ) |
+0[ L2250, (a0 (Ax)
[ (Ax)?
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Letting Ax — 0

U
T, = (20-1)2r—

When 0 # 5 this numerical solution is inconsistent with the originally stated

p.d.e. and is consistent with the p.d.e.
U U _

{1+2(28-1)r} 5= — = 0
A

When 0 = —%, the scheme is consistent. The Du Fort and Frankel 3 level explic-
it scheme is stable for all 7 and is of 0 (A%, Ax?).
In general the scheme presented in this example is conditionally consistent, and

. . 1 :
must satisfy the conditions 6 = 3 and At = rAx? to be consistent.

Summary of Accuracy Considerations:

The order of accuracy of a scheme must be determined by examining the differ-
ence equation as a whole, not the individual component terms.

We can play with things such as the relationship between Ar and Ax to in cer-
tain cases increase the order of aécuracy of the scheme.

Not all numerical discretizations are consistent with the p.d.e. that you’re try-

ing to solve. THIS IS VERY IMPORTANT TO REALIZE!!



GRID DESIGN BASED ON LOCAL TRUNCATION ERROR ANALYSIS

* Problem
- The % = "/‘.gfx T criterion can result in poor grids for tidal computations.

- The L/Ax criterion does not indicate a need for high resolution in the vicinity of steep

topographic gradients such as the continental shelf break and continental slope.

- The L/Ax criterion does not recognize two-dimensional structure in the response.

Concept

Formally compute local truncation error.

- Compute nodal spacing such that the estimated local truncation error is kept constant

throughout the domain.

- Response derivative terins in the expression for truncation error are estimated using ei-

ther fine or coarse regular grid computations.

One Dimensional Idealized Bathymetry
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Truncation error analysis for the momentum equation results in:

For irregularly spaced grids:

i+ 1T

ax”

9
LN (SR S CL
TvE = ( ) 2(Axp,  — A+ Ax, tAx,,,

. !

| a 1 i, ],3_\—3+5_\;5._L ?J‘f;’,
+ §(ij+l—ij)(A\-j+A.x-,+1)5:3’+-{~—-'—-~'—~—‘- e

L2 Axpe vy fo
2 3
A, (A +aAd, o,
+ 2 3(A.r,.+,—Ax,.)—TJ+ el Ml 2% -.1}1
6 At AN TAYL Joy
3R, 1iadead, VT,
+ l(L\.ir- —At:-}(ﬂxz--:»A.vz-,L )r—]?-" +iMr——1 +H.O.T,
4T ’ ' O A A G

For regular grids with Ax; = Ax; | = Ax:

6

3 . L L

io+t(, 208; Ay'diy gazanj A O
2712 oA 3

ax ox

T!"J{E = X — +__]+H.O.T.
6 ox 20247

Compare prids designed with the following criteria:

Limit the Second order truncation error terms in the expression for T;,; with constant Ax

- Note that we neglect adjacent element size variability

Limit the Seeond and Fourth order truneation error terms in the expression for Ty with
constam Ax

- Note that we neglect adjacent element size variability

Limit the First through Fourth order truncation errer terms in the general expression for
Ty with variable Ax,
- Note that we fully consider adjacent element size variability

ol
Topograpliic Length Scale (TLS) Criterion: Ay € me—

®
dx
- Note that in the limit as topography flatiens, gi: -3 (), element size increases, Ax - oo

Wavelength to grid size criterion A—t = —“/—g—h—z 2100

Ax

- Note that the 100 value is high relative to typical discretizations used in most studies



Resulting Grids Produced with the Various Criteria
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- Truncation error based grids attempt to provide an even spatial distribation of the source

of the error, the local truncation errors in the Momentum and GWCE equations.

- TFruncation error based grids provide excellent results on a per node basis compared to

the widely used wavelength to grid size and even TLS criterion.

- Fourth order truncation terms should be considered in regions with large grid spacing

(i.e. deep waters).

- Odd order truncations terms associated with the rate of change of grid size can be impor-

tant in the local truncation error. This limits the rate of adjacent element expansion.

- Resulting grids indicate high resolution requirements over the continental shelf, shell

break and slope.

- Derivatives in truncation error terms can be estimated using hoth fine and coarse grids
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Figure 8. GOMEX_W100 (Sblid curve) and GOMEX_LTEA (dashed curve) CAFE plots of eleva-
tion errors: a) absolute elevation amplitude; b) relative elevation amplitude; ¢} absolute elevation
phase.
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Figure 9. GOMEX_W100 (solid curve) and GOMEX_LTEA (dashed curve) CAFE plots of veloc-
ity errors: a) absolute major.semi-axis; b) relative major semi-axis; c) absolute major semi-axis
phase.
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TABLE 1. ELEVATION ERROR MEASURES, RELATIVE TO THE
SPLIT-BY-FOUR VERSION OF THE LTEA-BASED GRID

GOMEX_LTEA GOMEX_WI1i0

Elevation Amplitode (absolute}
Percent area exceeding -0.01 cm 0.54% 7.27%
Percent area exceeding +0.01 cm 1.04% 60.07%
Total percent area exceeding £0.01 cm 1.58% 67.34%

Elevation Amplitude (relative)
Percent area exceeding -1.0% 0.10% 6.54%
Percent area exceeding +1.0% 0.71% 21.13%
Total percent area exceeding = 1.0% 0.81% 27.67%

Elevation Phase (°)
Percent area exceeding -1.0° 0.12% 7.99%
Percent area exceeding +1.0° 0.12% 2.34%
Total percent area exceeding +1.0° 0.24%

10.33%

TABLE 2. VELOCITY ERROR MEASURES, RELATIVE TO THE
SPLIT-BY-FOUR VERSION OF THE LTEA-BASED GRID

GOMEX_LTEA GOMEX_WI100

Major Semi-Axis (absoluie) .
Percent area exceeding -0.1 cm/s 0.42% 1.64%
Percent area exceeding +0.1 cm/s 0.40% 1.44%
Total percent area exceeding +0.1 cm/s 0.82% 3.08%

Major Semi-Axis (relative)
Percent area exceeding -5% 1.14% 2.52%
Percent ares exceeding +3% 1.14% 12.26%
Total percent area exceeding * 5% 2.28% 14.78%
Major Semi-Axis Phase (°)
Percent area exceeding -2.0° 0.85% 4.15%
Percent area exceeding +2.0° 0.92% 3.30%
Total percent area exceeding +2.0 ° 1.77% 7.45%
Eceentricity

Percent area exceeding -0.04 0.48% 2.71%
Percent area exceeding +0.04 0.14% 1.26%
Total percent area exceeding +0.04 0.62% 3.97%

Major Semi-Axis Direction {°)
Percent areua exceeding -5.0° 0.45% 1.78%
Percent area exceeding +5.0° 0.34% 1.58%
‘Total percent area exceeding +5.0 ° 0.79% 3.36%




