Lecture No. 6
Lapidus and Pinderb 108-185; Smith, 43-49; 67-75.

General Considerations for Stability and Error Analysis

« The discrete solution at any point in time includes errors due to the initial nu-
merical approximation to the specified i.c. as well as truncation errors and
roundoff errors.

- Truncation errors originate from the discrete representation of each differen-
tial term in the p.d.e. The difference between the continuum form of the
p.d.e. and the discrete form of the p.d.e. represents the truncation error.

- Roundoff errors arise from the computers inability to provide an infinite
number of decimal places of precision to represent a number.

- Truncation errors always build up in time (i.e. as the solution time marches
forward from time level it - |

- Roundoff errors may or may not build up in time.

« The discrete solution can always be represented by a Fourier series.
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- The shortest resolvable waveléngth of any numerical solution is 2 - Ax.

- Insufficient numerical resolution (i.e. not enough nodes in space and/or time)
can result in discrete solution components existing at the “short” wave-
length (2 - Ax) portion of the Fourier spectrum.

- Roundoff error always results in discrete solution components existing at the

short wavelength portion of the spectrum.

Stability
Stability relates to the stable decay or unstable growth of component of the dis-

crete solution (which includes errors in representing thg specified i.c. as well as

truncation and roundoff errors). Whether the various (Fourier) wavelength com-

ponents of the discrete solution are amplified or damped depends on the nature of

the d{ﬁ’eren% equations not the p.d.e.!

 For unconditionally stable schemes, all wavelength components of the solution
are always damped. Typically implicit schemes are unconditionally stable (ie.
there are no restrictions required to make the scheme stable).

» For unponditionally unstable schemes, some or all wavelength components of

the solution are always amplified. This makes the numerical solution useless.
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» For conditionally stable schemes, the numerical scheme will be stable under a

required set of conditions.

« Stability is a necessary but not sufficient condition for a numerical scheme to be

accurate.

« An unstable scheme is not convergent.

Heuristic Approach to Stability

« THustrates how a discrete solution or a Fourier component of a discrete solution

behaves in the time marchin'g'process.
« The approach does not provide information regarding the bounds on stability
unless every possible combination/situation is tried out!

« Thus we will examine what the difference equations do to some discrete solu-

tion.

Application of the Heuristic Approach to Stability

Let’s examine the growth/decay of a high wavenumber (i.e. short wavelength or

near 2 - Ax) initial condition (i.c.) represented by one non-zero value at a point in

space.
We will consider the growth/decay of this i.c. for the explicit discretization to the

time dependent diffusion equation:
Recall that the explicit FD discretization for the time dependent diffusion equation |

is:

| [ AD 280 AtD
Uij+1 = [(AX)ZJMH-IJ-I-[ - (M)2:|ui,f+[iw:]ui—l,j




Letting:

o = AtD

(Ax)?

Leads to:
Wije1 = Pipr, T [1-2p 0y j+pu; o ;

Case 1
Letting;

=1

P =3
. . . . . i AtD

results in the difference equation for this specific ratio of p = )2 :

1 1
Upj+1 = Flig1,jT 581,

This corresponds to the following molecule:
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Let’s look at the development of the error as the solution marches through time (us-

ing the molecule):
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Thus the high wave number solution is damped out by the difference equations!

Case 2

Letting,
p=1

D
results in the difference equation for this specific ratio of p = (i;) 5°

_ui: .+ui—1!j

Uijel = Wit j
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This corresponds to the following molecule:
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Let’s examine how the solution propagates for this discretization.
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« This solution is unstable. The amplitude of the solution grows in time.

In addition, note the oscillations in sign in both space and time. The oscillatory

2 . Ax and 2 - At behavior is often associated with instability.
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Notes on Instability

o Although we can have unstable growth for all wavelength components of a dis-

crete solution (both short and long), typically the shorter wavelength compo-
nents of a discrete solution experience the most rapid unstable growth.

» Eliminating the short wavelength energy from a discrete solution by increasing
the level of resolution (i.e. the number of nodes in space and/or time) does not
solve the problem of unstable growfh of short wavelengths, if it exists, since
roundoff always causes the existence of energy in the short wavelength range

regardless of the level of resolution used!

o We desire bounds on instability and therefore we require a more formal analysis

technique than the Heuristic approach.

Stability Analysis bv Fourier Series Method (Von Neumann’s Method

e Easy touse
» Not as rigorous as other methods since it neglects b.c.’s.

e Notational change: i — p (spatial index), j — g (time index)

Step 1: Express the initial condition (at ¢ =0) in terms of a complex Fourier Se-

ries in space. Let:

N »
u(x) = Y, Anemmﬂ where { = J—1

n=0

The discrete solution at a given pivotal (or nodal) location is:

u(pAx) = i, for spatial points p = 0,1,2,...,N
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X =pax
Ab=o P=! p=2 P:} ' p=N-2 PN P=N

N,
-

N

f-Nax

“This results in N + 1 equations (1 at each pivotal point or node). This then allows us
to determine the amplitude A, at each pivotal point. |
Letting x = pAx and [ = NAx

. . . i Ax
emnx/l — em'rcprlNAx = e B,.P

where

ne

= — — = wavelength of wave component n
B" NAx Alvndads” P

and the relationship between wavelength and wavenumber is defined as:

where

A, = wavelength of wave component n

With these considerations:



These N # 1 equations allow the unique determination of unknown coeffi-
cients A , A4, Ay, Ay
The point is that we can exactly represent the i.c. and/or discrete solution at all

the nodes by a Fourier series!

Hence the i.c. (at time = 0) has been expressed as a Fourier Series! Therefore
any i.c. or discrete solution can be expressed as a Fourier series (sines/cosines

or in equivalent complex exponential form.)

Since the FD equations are linear, separate solutions can be added. Thus we
need only consider the propagation of the solution due to a single generic

term in the Fourier series.

A wide range of wavelengths can exist in any i.c. and discrete solution.

- The longest wavelength coincides with n = 0.

nit
B. = NAx

- The shortest wavelength coincides with n = N.

N=
By = NAx



- All other Fourier components of the i.c. and discrete solution range between

these two extremes.

Due to the linearity of the difference equations, we consider only one component in
the series. We note that the coefficient A is a constant which can now be neglected
(since we’re only considering one generic component).
Thus the a generic wavelength component representing a portion of the discrete i.c.
can now be expressed as: .

, = eiﬁpr
Step 2: We can now investigate the development of the initial condition into the
time varying discrete solution as ¢ increases. We note that the solution to the FD
equation must reduce to u, = ¢PPA% when t = gAt = 0 (i.e. the time varying so-
lution must also satisfy the i.c.).

Let's assume that the solution of the FD equation may be written in separable form:

" _ eineut
Pq
=
__ _iBpAx_ogAt
Upg =€ ¢

=

_ iBpAx q

Up,q = € £



where

t
A
€ = e = the amplification factor

o = in general a complex constant

We note that Uy g reduces to u, = ¢PPAY when g = 0 (i.e. whent = 0).

We note that the amplification factor equals the ratio of the solution at consecu-

tive time steps. Thus:

up £, g+ l: E_,
u
P.q
The generic discrete solution component with wavenumber ]3" will not in-
crease as t increases if the Von Neumann Condition for the amplification fac-

tor is satisfied:

E<lor-1<&<1

We note the importance of avoiding any lampliﬁcation in any solution compo-
nent as a solution time marches along! Even the slightest amplification (i.e. || |
slightly greater than unity) will lead to unbounded growth.

1Ej<1is a necessary and sufficient condition for stability for 2 level time differ-
ence schemes (but it is not always sufficient for 3 or more level equations al-
though it is always necessary!) |

The Von Neumann method or Fourier analysis method described strictly applies

only to linear difference equations with constant coefficients and strictly speak-
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ing only to i.v.p.’s with pericdic initial data. In practice the method gives useful

results even when application is not fully justified!
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Lecture No. 7

Example Applications of Fourier Analysis
Example 1: Apply Fourier analysis to the explicit solution of the diffusion equation.

Up g+1 = pup+1,q+ (1-2p) up,q-l-pup_l,q

AtD

where p = —
Ax

Since the difference equation is linear, we need only consider one generic Fourier
component (which can represent any wavelength ranging from the shortest resolv-

able wavelength, A = 2 - Ax, to the longest wavelength, A = oo, Therefore we sub-

stitute the generic solution component of the form:

u

_ iPpAxeq
g~ € g

into the difference equation. This leads to:

eiBPAx&q+l — peiﬂ(p+l)AxE_,q+ (1-2p) eiﬂpﬁxgq_{_peiﬁw".l)ﬂx&q

-

£ = pePA 4 (1-2p) +pe P
-

= (1-2p) +p (P 4+
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However since:

PAx | BAE _ 2cosPAx

and

cosPAx =1 — 2sin? (l-)’_;_‘x

Substituting into the relationship for the amplification factor:

E=(1-2p)+2p(1— 231112B
| =
E=1- 4psm2I3

» & equals the amplification factor for the explicit solution to the diffusion equa-
tion.
Now examine what requirements must be satisfied such that |§| <1 for all wave-

numbers B (which can range between 0 — %). Thus we require that:

~1<1 —4pstB <1

»  The upper bound is automatically satisfied since:

AtD

-4 )2>0 and sin® >0
X
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For stability then

~1<1 —4psin2(-l-3—-§——x)
=
1
ps
2sin2('3—§-x)

- The smallest wavenumber corresponds to § = 0 (A = eo is the longest

possible wavelength component of the solution) which leads to:

p=oo
- Thus the long wavelength components do not appear to have any restric-
tions on (p = (AtD)/ (sz)) ﬁm in order to avoid unstable growth (i.e.
to keep |E| < 1).
- The highest wavenumber corresponds to p = n/ (Ax) (A = 2-Ax is the

shortest possible wavelength component of the solution) which leads to:

pS—-nl—m = p=

2sin? (g)

b =

- Thus the shortest wavelength components appear 1o restrict

(p = (AtD)/ (sz)) <1/2 in order to avoid unstable growth of the short

wavelength components (i.e. to keep |§| <1).



» We must always select the most restrictive stability condition since WE AL-
WAYS HAVE high wavenumber components in our discrete solution due to
either poorly resolved i.c.’s, roundoff error or even nonlinear transfer of ener-

2y to the high wavenumber range.

« Thus in general for stability we must have

1
0<PS§

- Note that for p = 0, we have At = 0. Thus the lower limit of the stability

condition is automatically satisfied.

« An alternative analysis would simply examine the case which corresponds to
BAx
2
This leads to the most restrictive condition on p. Therefore:

the largest value of sin? ( ) (which equals 1 and corresponds to BAx = ).

p< % for stability

» Note that we observed this stability condition to be true when applying the Heu-

ristic approach!



Example 2: Examine the stability conditions for the weighted implicit/explicit ap-

proximation to the diffusion equation.

= (9(”p+l,q+1'2”p,q+1+“ --1,q+1)

P
AtD
where p = 3
(Ax)
Substitute;
iBpAx
“p.q = PP

into the FD approximation. This leads to:

eiBPAx§q+1(1+2p9) = eiB(P+1)Ax§q+lpe+efB(P"1)AI§q+1pe

+BO DG (1) + P70 (1-2p +20p) +27 TP I (1-6)

Now divide through by o PPAX and &9 and re-arrange:

E[1+2p0-p8 (P 7P =

0 (1—8) [PA% 4+ 7% & (1-2p +20p)



However:

BAx L BAY 9 _4sin (BAx

Substitute in and re-arrange:

1—4p<;—e)sm2(5—§—’f)

g =
1+4p93in2([3——£—‘x)

For stable decay and thus stability, we must have:
g <lor-1<E<1
o .2 ,BAx i .
Again since 0£0<1, p>0 and sin (T) > (0, the upper bound is automatically
satisfied. Thus we must satisfy:
A
1—4p (1 -0) sin? (ﬁTx
-1<

= Ax
1+4pesin2(P~—2—)

=

—1-4pBsin? (ng) <1—4psin? (ﬂ_;_Ax) + 4pOsin’ (Eg—x)

_-,_l__l_g.f.-_,a-.-:) = B(D'D‘ ._'J ( “L“J u’ .;-,635’(95{'-:‘"2‘

A AT e i
ABips el Wt clener e dire i of;ﬂ.ua.f’.ar"?, . = L
L m2 L (-upeBfR)Ee
-2 D (o dagalp s
p= BAx
2 ~4eBLD
(—4+86) sin? (5~ L
C—u;;g)&,‘-
=
ﬂl‘.{ﬁ'.,;r-n..‘!‘\.—-lrd:r ”'I;- b f. ap 89 } a =~ = ‘/}D. 5
J;}/ \"_"_:E”.%:;-» - =3
{—q—-r e, (b;‘?-( “'__.. ).
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1

ps< =
2(1-28) sinz(PZ—)

Evaluating this expression over the range of BAx values:

- The smallest wavenumber corresponds to = 0 (A = o is the longest

possible wavelength component of the solution) which leads to:

p<eo

- The highest wavenumber corresponds to B = ©/ (Ax) (A = 2- Ax is the

shortest possible wavelength component of the solution) which leads to:

1
P =51 =20)

- Thus the long wavelength components do not have any restrictions on p in
order to avoid unstable growth while the shortest wavelength components are

restricted p = (AtD)/ (sz). <1/(2(1—-208)) in order to avoid unstable

growth.

Alternatively, we can simply evaluate the expression for p using the largest val-

Ax
ue of sin? (ET_) (which equals 1.0), leading to the most restrictive condition:
1

1
PS5 =20y



Summary of stability conditions for the weighted implicit/explicit approxima-
tion to the diffusion equation:
- classic explicit: ® = 0 —  Stability requires that p < %

1 - . 1 1
[ — <_ Y
0O<b<s; — Stability requires that p <5 (5 —5g)

- Crank-Nicolson 0 = —>  Stability requires that p < oo, i.e. the scheme

is unconditionally stable.

B =

1 1 1 N .
- = < <l .=
5 <b<l — p= [2 1=26) ] which is negative. However p >0,

and thus for this range of 0 values the scheme is unconditionally stable. Alter-

natively we note that:

1-4p(1-0) sinz(%)
-1< sz
1+4pesin2(-52—)

is always satisfied.



Example 3: Let’s examine the wave equation:

U _ d*U
o ox?

Each term is discretized using a central approximation:
-—1——(u -2u, ,+u ) =.._1_(u —2u_ _+u )
AL D, q+1 g gl Ax2 PTL4 P.q " “p-lLig
Since the FD equation is linear, we need only consider one generic wavelength

component. Thus we substitute in u,, , = ¢'PP Axéq and rearrange. This leads to:

P q

E2-2AE+1 =0

where A = 1—2r%sin? (B‘%-Ax)
At
and r = “ﬁ

‘We now have 2 roots to the equation. We must satisfy both restrictions:

g = A+ @D g =a-@-n’”

Thus we must satisfy [};II <1as wé]l as |§2| <1,

« Sincer, Afand fareallreal = A=<l

"+ Whend<-1 = l&zl > 1 and the solution is unstable.

+ When—-1<A<1 = A?<1,in which case we can express:

)

£ = A+i(1-40)" and, = A-i(1- A
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- Thus:

B = & = {42+ (=42} = 1

Thus it is necessary that —1 £ A <1 in order to have stability. This ifnplieS that:

-1 51—2r2sm2(‘%"-) <1

The upper limit will always be satisfied and thus we require only that:
BAx

~1<1 -—2rzsinz(——2-—)

Evaluating this expression over the range of fAx values:
- The smallest wavenumber corresponds to B = 0 (A = oo is the longest possi-

ble wavelength component of the solution) which leads to:

-1=<1

. The highest wavenumber corresponds to § = 7/ {Ax) (A = 2-Ax is the

shortest possible wavelength component of the solution) which leads to:

~1<1-2,2
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» Thus the long wavelength components do not have any restrictions on  in order
to avoid unstable growth while the shortest wavelerigth components are restrict-

At
edtor = s < 1 in order to avoid unstable growth.

Notes on Stability Analysis and Convergence

. Lax’s equivalence theorem states that given a properly posed linear iv.p.and a
linear FD approximation that satisfies the consistency condition, then stability is

a necessary and sufficient condition for convergence

« A numerical method is convergent if:

”Up’q—up,q"—)O as Ax——)O_andAt—-)O

|| || =somenorm

Up 7= the exact value

Uy g = the numerical value

- Note that in practice we can never achieve || U, g~ U q|| — 0 on a computer

due to roundoff problems.
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« Fourier analysis does not consider the effect of b.c.’s but only of interior points.
However b.c.’s and their treatment can be of critical importance to a numerical
scheme. To consider the effect of b.c.’s, we must use matrix methods (the ma-
trix includes the b.c.’s) and compute the eigenvalues of the discretization ma-
trix.

«  We can also “qualitatively” compare the accuracy and other properties of nu-
merical schemes using Fourier methods. This will be explored in much more

detail in a subsequent lecture.
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