Lecture No. 12
References: Roache, p. 64-67; papers by Leonard.

Problems with Computing Convection Dominated Transport

» There are significant numerical problems with central differenciné schemes for
convection dominated flows.

»  We saw that due to phase propagation errors we left behind part of the solution
(in particular the short wavelength components of the solution) and that for
Pe > 2 wiggles resulted (this was not related to stability). Only if we had a very
substantial damping ratio (numerical to analytical) then the wiggles were elimi-
nated but at the cost of damping the high wavenumber portion of the solution
and sometimes the low wavenumber components as well.

» Since our numerical “problems” are associated with thé central discretization of
the convective terms, let’s change the FD discretization for that term. We note
that the central methods seem to work well for the diffusion terms.

« Let’s examine the use of upwind differencing to improve our solutions to:

du ou o2u

Upwind Differenced Explicit Scheme
2u. 4

Uy g+el " Hpqg  Hp g Up-1,q _ SYptlg” “Mpga T ¥p-1.4g
+V =D .

If V>0-— useabackward difference operator for the convection term

If " V<0— useaforward difference operator- for the convection term

Uy g4l = up,q—C# (up,q_up—l,q) -!—p(ch+1,q—2up7q+up_1,q)
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Investigate Stability Using Fourier analysis

Let:

iB pAx
= £'d,n
uP: q E ne

Substitute into the FD equation

g B, (P 1) Ax
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‘However:

]

e—IB”Ax = cos (BnAx) —isin (BnAx)

iBAx  —ip Ax
eB" + e P = 2cosP Ax

Thus:

g =1-Cu(1- cosP_Ax+isinB, Ax) +p (2cosB Ax—2)



The solution can be shown to be stable when (Roache, p.65):
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ForD =0 (p=0) stabﬂity requires that C4 <1 = At< TV_I Recall that

explicit cenfral schemes were unconditionally unstable for D = 0 (static insta-
bility). However now we can ensure stability by making At small enough.

Az, the time step required for stability, gets smaller as D increases.

D=0 = P, ,=c = C,<1 forstability

P,=2 = C4<0.5 forstability
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In general we have a scheme that we can make stable by decreasing At. Let’s try it

and see how it performs.

Numerical Experiments Using the Upwind Difference Explicit Scheme

See Figures L12.1 through L.12.6

Figure L12.1: C; = 0.1 and P, = oo
No wiggles but excessive damping of the entire solution.
« FigureL12.2: C4 = 0.1 and P, = 2.0
Excessive damping of the entire solution.
* Figure L12.3: C4; = 1.0 and P, = oo
No wiggles and an exact numerical solution (i.e. the nodal values are exact).
. FigweL12.4: C; = 1.0and P, = 2
Unstable (as predicted by our stability constraint).
» Figure12.5: C, = 1.1 and P, = oo
Unstable (as predicted by our stability constraint).
« FigureL12.6: Cy = 1.l and P, = 2

Unstable (as predicted by our stability constraint).

Thus we note that:

» The derived stability constraints are correct.

» Fora very special case (Cy = 1.0, P, = oo) the scheme gives perfect results.
» The scheme always seems to get rid of wiggles.

e The scheme in general has tendency to be very overdamped.
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» Even the implicit central scheme was not overdamped at C, = 0.1, P, = 2.0.
However the upwind scheme introduces substantial damping for this relatively

easy case.

Truncation Error Analysis of the Upwind Differenced Explicit Scheme

Let’s investigate the accuracy of this scheme by examining the pure convection

equation only:

U _dU

This equation is discretized as (using the upwind scheme):
Uy g1 = Up g™ Gy (i g =1y 1, )

The truncation error 18 defined as:

T =U

p. q P,Q+1“Up,q+c#(Up.q"_U —l,q)

P

Using Taylor series:

Up.q = Upg
Uy g+1 =Y, q+Atag§’q+ 212 ziqu+0(At)3
Up-1,4 = Up q_Axagi,QJrAzx'z 2xg,q+0(_Ax)3
Up+1,q Up,q+Axagp’q+A;2+ zxg’q+0(Ax)3
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Substitute into the expression for the truncation error:

A% 2 |
T, =U, +AraU +— _‘—'f)__q +0 (A3
P q o1 21
P4 ot” p.q |
VAt U AX? 32 ]
P4 54
Divide by At and re-arrange:
oU U VAx 92U A 2U
_ ""pg pq _ pmg BT “pg 2 2
T, = etV R T +0 (A 240 (Ax)

In general this scheme is only 0 (Az), 0 (Ax) accurate.

Since:
U QU
o = Vox
=5
9 JU U
29 = 2 v
=
02U a oU
P TARE T
=
PV _ p P
912 ox2
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Substituting for the second time derivative in our expression for L

oU oU, . VAx9*U At U
— p. 4 P:qg ) plq P1q
Tog 57 +V e 3,2 2 2 +0(Ax) +O(At) +H.0.T.
aU  3U |
Since 57 = —VH for the exact solution, the truncation error equals:
VAx At U, 4
Thg = -5t 2V) 2 +H.O.T.
=
VAx AtV U,
'cp’q——z—(~1+ Ax) " +H.0.T.
=7
VA 2U
T, = —x(C#——l) — P24, HO.T.
’ ox?

This truncation term looks exactly like a diffusion term with:

Ax
D :—V——(C#—l)

npm

« This is known as Numerical Diffusion, Axtificial Diffusion, Artificial Damping.

« In general using a fully upwinded scheme we are really solving:

oU _JdU 32U
-9?+V§; = (D+D, ) 2

127



Thus a set of first order truncation terms is introduced which with their sec-
ond order associated spatial derivatives are of identical form to the physical
diffusion term. This introduces artificial or numerical diffusion which often
éompetes with the physical diffusion term. This explains the generally over-
damped nature of some of the solutions we examined in the numerical exper-
iments.

Often D> D, introducing excessive artificial diffusion and therefore leading
to a particularly poor solution |

The upwinded solution is however consistent!

At Cy = 1and P, = oo, our truncation error analysis indicates that D, ,,, = 0
and that the higher order terms in the truncation series (H.0.T.) are all equal to
zero as well, Therefore all truncation error terms are eliminated and a perfect

solution results (as we saw in the numerical experiments).

Fourier Analysis of the Upwind Differenced Explicit Scheme

Plot up

|E',| versus " demonstrates the stability for given values of P, and C,.

Ax

1 N n K
[I "l] ratio versus — indicates whether the numerical solution is over-

TEJ Ax

damped or not.

See Figures [.12.7 through L.12.14,
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» Figures L12.7/8: FD standard solution, fully explicit for P, = and various
values of Cy:

- IE_,'H‘ plot shows unstable behavior for all Cy; values. Therefore the scheme 18

unconditionally unstable (as we previou;c;ly found in our stability analysis).

A
Therefore |E_,'n| >1 V¥ (;AA/X) Cyg

B
E.

damps less than the analytical solution.

ratio: This plot shows the ratio > 1.0. Thus the numerical solution

«  Figures 1.12.9/10: FD standard, fully explicit for P, = 2 and various values of
Cy.
- |§'n] plot shows stable behavior for Cy <1 and unstable behavior for Cy>1
(as our previous analysis indicated), "
- ]Ejn| / |§nl plot; Shows that typically the ratio > 1 which indicates that solution
components are typically damped less thén the analytical solution.
- Note that this case shows that |§'n| < 1.0 (and thus stable_:) while we can have
|§'n\/ lﬁnl > 1.0. T;his just nﬁeéns that the numerical solution is damped less
than the analytical solution. The numerical solution, however, is stll

damped enough to prevent unstable growth.
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Figures .12.11/12: FD upwinded and explicit for P, = co and various values of
Cy. |
- |E_,'n| plot shows stable behavior for C, < 1.0 (as predicted with stability anal-
ysis and numerical experiments).
- |§'n[/|§n[ ratio plot exhibits very high damping for a very wide range of
A /Ax values. This leads to severely overdamped solutions without any
wiggles (since these are most heavily damped). However, at Cy = 1, we

have a perfect solution (since R, = 1 and @ = 0 for all values of

A,/ Ax).

Figures 1.12.13/14: FD upwinded and explicit for P, = 2 and various values of
Cy. |
- IE_,'n‘ plot shows stable behavior for Cy < 0.5 (as predicted with stability anal-
ysis and numerical experiments).
- |§'n|/ |&n‘ ratio plot again exhibits very high damping for most of the A, /Ax
range. This again leads to the highly overdamped solution seen in the

numerical experiments (only considering the stable range 0=<C;<0.5).
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Lecture No. 13

References Leonard: 1. Comp. Meth. Appl. Mech. & Eng., 1974; 2. F.E.M. for Con-
vection Dominated Flows AMD Vol. 34, 1979; 3. CTAC-83 Conference. '

Solutions to C—D.cguation for Convection Dominated Flows

» Central schemes of aﬁy order applied to spatially resolve the convection opera-
tor of tend to lead to numerical oscillations (wiggles, noise, 2 - Ax waves, efc.)

« Tirst order upwinding of the convective terms in general introduces a truncation
term which is identical to a diffusion type term. This introduces lots of “artifi-
cial diffusion” (or damping) which lowers peaks, causes excessive spread and
destroys gradients. Even though the special case 6 = 0.0, Cy =10,P, = o

leads to a perfect numerical solution, upwinding in general:

_ Is not robust. In fact we have to be very closeto Cy = 1.0and P, = o lo
get it to work well! If we deviate from Cy = 1.0 and P, = o the solution

gets very bad and is overdamped.

- Can not maintain C, =10 in 2-D general flows since Ax and 4 change in

- space.

Alternatives to Pure Upwinding

1. Optimal Weighfed upwinding

Approximate the convection term as:

ou M= Ui U1~ Uit
3;—'%;,{ Ax }r(l_aup)[ 2Ax

_ ) 0 = central differencin
Oy = upstream weighting factor ( . 17 5

= full upwinding

For steady problem we can derive:



« For this selection of 0, all truncation terms are eliminated for 1-D steady state
problems.
« However this technique does have considerable limitations:

« Even for moderate P, > 5 - 10, o, = 1. This works well for 1-D steady

- opt
state problems. However for a s_]iglitly different problem we readily get overly
diffusive (or damped) solutions. Also when applying this scheme to 2-D flows,
we experience excessive damping perpendicular to the flow direction (referred
to as cross wind diffusion). |

s Very serious problems when flow direction changes
L has been derived for the steady state problem, it does not carry over

well to the time dependent problem.

« Many prominent investigators are opposed to using standard upwinding meth-
ods (see Figure L13.1).

- Leonard  very much againét 1st order upwinding

{

Gresho “Upwinding can be dangerous to your health”
- Abbot “Like sedating a person with a nervous breakdown”

«  For realistic flow computations upwinding invariably leads to over-diffused so-

lutions!

2 Matched Artificial Diffusivity Schemes (MAD)

_ Schemes which compute the artificial diffusivity introduced by upwinding
and subtract it off of the physical diffusion term. This only works when

Dnum<Dphys. simce

we would be trying to add in negative diffusion.

The procedure becomes unstable when D, > D,
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A SURVEY OF FINITE DIFFERENCES OF OPFINION ON NUMERICAL MUDDLING OF THE
INCOMPREHENSIBLE DEFECTIVE CONFUSION EQUATION

B, P, Leonard

City Unlversity of New York
College of Staten Istand, New York

ABSTRACT

Finite difference methods have been very guccessful for partial
differential equations dominated by the Laplacian operator, such as thase for
diffusion and wave motion. However, when the first-derivative convection
operater becomes important, standard central difference methods lead to
incomprehensible wiggles or econfusing nonconvergence ~— and are therefore
clearly defective. There have been various opinions on suitable remadles, one
of the most popular being to use highly stable one-sided upstream differencing
for the convection term. But the artificial diffusion of such metheds leads
to low accuracy. MNevertheless, propoments have "justified" upstraam
differencing (or upstream-central hybrids) by a variety of arguments -—-
vnfortunately, all fallacious! Much confusion hag astemmed from a mddling of
the meaning of truncation error. When it is realized that Ygrandard" central
differencing for the Laplacian operator is a third order method, and that
centrel difference methods (of any order) lack inherent stability for
modelling odd order derivatives, the consistent third erder couvective
differencing scheme is seen to be optimal ip terms of accuracy, stabilircy, and
gimplicity.

Hoo L13-lb  Fom Computers and Fluids

) F.,-}:nthu‘.u Valq pp25-253

DON'T SUPPRESS THE WIGGLES-—-THEY'RE
TELLING YOU SOMETHING!t

PuiLe M, Gresso and Ropert L. LEE
Lawrence Livermore National Laboratary, University of California, Livermore, CA 94550, U.S.A,

{Received 15 October 1979}

Abs(r:t_:l—-’l’[w subject of oscillatory solutions {wiggles), which somelimes result when the conventional
Galerkin finite: clement method is employed to approximate the solution of certain partial differential
equations, is addressed. It is argued that there is an important message behind these wiggles and that the
appropriate response (o il usually invelves a combination of: re-examination of the imposed boundary
conditions, judicious mesh refinement (via isoparametric clements) in critical areas, and sometimes even
admitting that the p.rubltm. as posed, is just too difficult ta solve adequately on an “affordable™ mesh. Itis
I'u_nher argued that il is usually an inapprapriate response to develop methods which a prion’ suppress these
wiggles and thereby make claims that these unconventional FEM techniques are actualiy improvements and
can be used to solve difficult problems on coarse meshes.
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3. Higher QOrder Finite Difference Approximations

Leonard [1979: Comp. Meth. Appl. Mech. Eng.] proposed a 3rd order upwinded

scheme for modeling the convective term. He uses the approximation:

Mip1 %1 Hi+1 =2y
( 2Ax ) - ( 6Ax ) B
4
' %+liﬂmﬂH0T
ox 12 5,4 |
=
4
2u; g+ 30— 60+, _ou 1 d “:'A 3. H.O.T

6Ax AR VY
The scheme is implemented with the above approximation for the convective
terms, a central approximation for the diffusion term and an explicit scheme for
time.
“QUICKEST” which designates quadratic upstream interpolation for convec-

tive dynamics with estimated streaming terms.

Advantages of Quickest:

Upwinding has a stabilizing influence on short wavelengths. i.e., they tend to
get damped out.

The spatial derivative on the leading order truncation term is higher than the
modeled physical diffusion term. (i.e., fourth derivative truncation term). Thus a
truncation term is no.longer competing directly with a physically relevant term
in the p.d.e.! Furthermore the leading order truncation term is of O (Ax) > as op-

posed to O (Ax) as was the case in standard upwinding.
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» An algorithm which uses the quickest approximation for convection and a cen-
tral type approxjmétion for diffusion will be exact for a cubic response (in terms
of a polynomial) for any combination of convection and diffusion since the ap-
proximation for convection introduces a leading truncation term with a fourth
derivative and the approximation to the diffusion term also includes a fourth de-
rivative in the leading truncation term:

wp = 2wt 82 1 tu,
Ax? ox? 1 ax*

e Let’s examine the Fourier amplitude and amplitude ratio portraits to see why

— (A9)2+H.O.T.

QUICKEST is successful. The amplification factor derived using Fourier analy-
sis (Leonard, 1984, CTAC-83):

|§1n| =1- (2p+C§) (]. - COS8 (BHAJC)) —ZC#lié (]_—'C;?'#) —p:l
(1 cos (B Ax))2—F{Cy sin (B,Ax) +2Cysin (B,Ax)

[ (1-Ch —p](1-cos (B,A0) }

B M
Plot IT;'H| and H&nH Versus (E)

. Figures L13.2/3, P, =
- Figure L13.2: Shows that the method is stable at P, = o0, C, < 1.0
A
- Figure L.13.3: Shows that damping occurs for -A—f—c < 10.

- However, for larger A—; , there is almost no damping.

- Therefore, the scheme damps very short wavelengths (these typically appear

as wiggles due to phase propagation errors) while it doesn’t damp long
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wavelengths.

Figures L13.4/5, P, = 2
- Figure L13.4: shows that the method is stable for Cy <1.0 and P, = 2.

- Figure L.13.5: Again shows that only short wavelengths are damped out

(wiggles) whereas the longer wavelengths are not.

QUICKEST .damps very short wavelengths (wiggles) while it does not damp
longer wavelengths.

Furthermore phase lag (not shown) is significantly better than the standard cen-
tral schemes.

The above is about as good a set of conditions as one could hope for, short of
having a “perfect” solution with no truncation terrns.

Stability of QUICKEST: Figure L.13.6 shows the stability range for this scheme.

General Remarks on Quickest

QUICKEST works very well (not perfectly) for a wide range of problems. It’s
an excellent scheme for FD solutions to equations with first spatial derivatives.
Note that higher order versions of Quickest haven developed, reeessy.

Even order upwinding schemes (e.g. 2nd order with 3 points, 4th order) doesn’t

work nearly as well as odd order upwinding schemes (e.g. 3rd order with ,5’ .

points). *

Even order upwinded solutions tend to be wiggly. (See Figure L13.7b)
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