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SUMMARY

We consider the approximation of the depth-averaged two-dimensional shallow water equations by both
a traditional continuous Galerkin (CG) �nite element method as well as two discontinuous Galerkin
(DG) approaches. The DG method is locally conservative, �ux-continuous on each element edge, and
is suitable for both smooth and highly advective �ows. A novel technique of coupling a DG method
for continuity with a CG method for momentum is developed. This formulation is described in detail
and validation via numerical testing is presented. Comparisons between a widely used CG approach, a
conventional DG method, and the novel coupled discontinuous–continuous Galerkin method illustrates
advantages and disadvantages in accuracy and e�ciency. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The shallow water equations (SWE) model �ow in domains whose characteristic wave length
in the horizontal is much larger than the water depth [1]. Simulation of �ow in shallow
waters can be used, for example, to model environmental e�ects of dredging and commercial
activities on �sheries and coastal wildlife, remediation of contaminated bays and estuaries for
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64 C. DAWSON ET AL.

the purposes of improving water quality, modelling the e�ects of storm surges due to tropical
storms and hurricanes, and studying freshwater–saltwater interactions.
The SWE consist of a �rst-order hyperbolic continuity equation for the water elevation,

coupled to momentum equations for the horizontal depth-averaged velocities. This system is
referred to as the primitive form of the SWE. These equations are often solved on domains
with fairly irregular coastal boundaries. Furthermore, to avoid spurious boundary e�ects, it is
often desirable to extend the domain away from the shore into deeper waters [2, 3].
Various �nite element approaches have been developed for solving the SWE on such com-

plex domains over the past two decades; see, for example, References [4–8]. Much of this
e�ort has been directed at deriving a �nite element method which is stable and non-oscillatory
under highly varying �ow regimes, including advection dominant �ows. As noted in Refer-
ence [4], a straightforward use of equal order approximating spaces for elevation and velocity
in the primitive SWE can lead to spurious spatial oscillations. Approaches based on mixed
interpolation spaces [5] have met with limited success. A more widespread approach has been
to replace the �rst-order hyperbolic elevation equation with a second-order hyperbolic ‘wave
continuity equation’, �rst proposed in Reference [4]. This model was extended to the gener-
alized wave continuity equation (GWCE) in Reference [9]. This approach has been utilized
in numerous �nite element studies, see for example References [2, 3, 10–19], and was anal-
ysed in References [20, 21]. This formulation is also the basis for the advanced circulation
(ADCIRC) model [14], developed by the second author and several collaborators.
The �nite element methods mentioned above are based on continuous approximating spaces.

In recent years, �nite element methods based on discretizing the primitive form of the SWE
using discontinuous approximating spaces have been studied [22–27]. This discontinuous
Galerkin (DG) approach has several appealing features; in particular, the ability to incorpo-
rate upwinding and stability post-processing (slope-limiting) into the solution to model highly
advective �ows, the ability to use di�erent polynomial orders of approximation in di�erent
parts of the domain, and the ability to easily use non-conforming meshes (e.g. with hang-
ing nodes). Moreover, the DG method is ‘locally conservative’ and ‘�ux-continuous’, that is,
the continuity equation relating the change in water elevation to water �ux is satis�ed in a
weak sense, element-by-element, and the numerical �ux over each inter-element edge or face
is continuous. These properties are useful when coupling the SWE to a transport equation
for modelling, for example, contaminant migration [28]. The GWCE formulation sacri�ces
the primitive continuity equation, thus the primitive form is no longer satis�ed in a discrete
sense. This implies and has led to continuity imbalances. DG methods have proven adept
at modelling hyperbolic equations [29–34], advection–di�usion [35–38] and pure di�usion
equations [39–43]. See also Reference [44] for a more thorough discussion on the history of
DG methods. The disadvantage of DG methods over standard Galerkin methods is their cost:
typically they require more degrees of freedom on a �xed mesh than their continuous coun-
terparts. The DG method is the basis of the University of Texas Bay and Estuary (UTBEST)
simulator [23, 24], developed by the �rst author and collaborators.
In this paper, we present a new approach for the SWE based on combining a DG method

for continuity with a standard continuous Galerkin (CG) method for momentum. This
approach allows us to model the hyperbolic continuity equation using the DG method, which
is well-suited for this type of equation, while still using a continuous method for momen-
tum. Therefore, we reduce the overall degrees of freedom using a complete DG method as in
Reference [24] while retaining a locally conservative, �ux continuous solution to the continuity
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GALERKIN METHODS FOR THE SHALLOW WATER EQUATIONS 65

equation. Stability and convergence results for this new methodology have recently been
derived in Reference [45]. Here we will focus on the numerical implementation of the method
and its validation by numerical test problems. We also compare this formulation to results
from ADCIRC and UTBEST. Application of the methodology can be seen in Reference [46],
which in particular discusses important issues pertaining to mass balance properties and the
impact of slope limiting.
We have implemented this new approach into ADCIRC. ADCIRC discretizes both the

GWCE and the momentum equation using continuous, piecewise linear approximating func-
tions de�ned on triangular elements. The GWCE is a quite complex and cumbersome method,
owing to the replacement of the �rst-order hyperbolic continuity equation with a second-order
hyperbolic equation. The GWCE �nite element formulation also does not produce a locally
conservative, �ux-continuous solution to the continuity equation. Moreover, the GWCE has no
particular mechanism for handling highly advective �ows, such as upwinding or stabilization.
The GWCE does work very well for smooth tidal �ows; see References [10, 11, 13, 16].
In our implementation, we have essentially replaced the GWCE formulation with a DG
method.
The paper is organized as follows. In the following section, we describe the mathematical

model and the numerical approximation. Section 3 then contains numerical results for the
two-dimensional quarter annular test problem.

2. PROBLEM DEFINITION

Vertical integration of the Navier–Stokes equations along with the assumptions of a hydro-
static pressure and a vertically uniform horizontal velocity pro�le results in the SWE of the
following form:

L≡ @�
@t
+∇ · (uH)=0 (1)

@u
@t
+ u · ∇u+ �bf (u)u+ fck× u+ g∇�− F=0 (2)

Equation (1) represents the conservation of mass and is also referred to as the primitive
continuity equation; (2) represents the conservation of momentum in non-conservative form.
The ‘conservative form’ of the momentum equations is obtained by multiplying (2) by H and
applying (1) to obtain

M≡ @Q
@t
+∇ · (QQ=H) + �bf (u)Q+ fck×Q+ gH∇�− F=0 (3)

where Q= uH .
In the above equations, � represents the de�ection of the air–water interface from the

mean sea level, H = hb + � represents the total �uid depth, and hb is the bathymetric depth,
u=(u; v) is the depth averaged horizontal velocity �eld, fc is the Coriolis parameter resulting
from the earth’s rotation, k is the local vertical vector, g is the gravitational acceleration, �bf
is the bottom friction coe�cient. Here we have neglected second-order derivative terms in the
momentum equation due to turbulent viscosity. In addition to the above-described phenomena,

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:63–88
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often we need to include the e�ects of surface wind stress, variable atmospheric pressure and
tidal potential forcing which are expressed through the body force F [1].
These equations are solved over a spatial domain � in R2 and for time t¿0. Let @� denote

the boundary of �, where n is the �xed unit outward normal to @�. Speci�ed elevation and
velocity and=or speci�ed �uxes are assumed on @�. Initial elevations and velocities �0 and
u0 at t=0 must also be given.
In order to formulate �nite element methods for the above system, let {Th}h¿0 denote a

triangulation of � such that no triangle �e crosses @�. We assume each element �e has an
element diameter he, with h being the maximal element diameter.

2.1. The GWCE and ADCIRC methodology

The GWCE is obtained by di�erentiating (1) with respect to time, (3) with respect to space,
adding the result, and adding a parameter �0 times (1). In operator notation, this can be
written as

Lt +∇ · M+ �0L=0 (4)

It is important to note that the basic �rst-order hyperbolic continuity equation has been re-
moved and is no longer satis�ed. The replacement GWCE equation has the bene�t of a
non-folded dispersion relationship when subject to a CG discretization, but does not satisfy
continuity. Furthermore, it is more complex and is di�cult to adequately analyse, and its
performance is subject to selection of �0.
A weak formulation of (4)–(2) is obtained by multiplying each equation by smooth test

functions, integrating over � and integrating certain terms by parts. In ADCIRC, � and u are
both approximated by continuous, piecewise linear functions determined through this weak
formulation, see Reference [14].

2.2. The DG method and UTBEST

UTBEST is based on multiplying (1)–(3) by (possibly) discontinuous test functions, and
integrating over a single element �e. This DG formulation gives rise to a �ux term on
the boundaries between elements. This �ux term is approximated using the so-called Roe
numerical �ux, described in Reference [23].
In UTBEST, both � and Q are approximated by discontinuous, piecewise polynomials

of some degree k, de�ned on each element �e. In our implementation we have considered
constants (k=0), linears (k=1) and quadratics (k=2).

2.3. A coupled DG=CG method

In this section, we describe a new method based on combining the DG method for the primi-
tive continuity equation (1) with a CG �nite element method for the momentum equation (2).
In order to describe the method, we �rst de�ne some notation. Let Pk(�e) denote the space

of complete polynomials of degree k¿0, de�ned on �e. For any function v∈H 1(�e), for each
element �e, we denote its trace on interior edges �i by v±, with

v−(x)= lim
s→0−

v(x+ sni); v+(x)= lim
s→0+

v(x+ sni)
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where x∈ �i and ni denotes a �xed unit vector normal to �i, see Figure 1. We will use the
L2(R) inner product notation (·; ·)R for domains R∈R2, and the notation 〈u; v〉R to denote
integration over one-dimensional surfaces.
Multiply Equation (1) by an arbitrary test function v∈H 1(�e) and integrate by parts over

each element �e to obtain

(@t�; v)�e − (uH;∇v)�e + 〈Hu · ne; v〉@�e =0 (5)

where ne denotes the outward unit normal to the edge @�e.
Multiply Equation (2) by a test function w∈ (H 1(�))2 and integrate over � to obtain,

(
@u
@t
+ u · ∇u+ �bf (u)u+ fck× u+ g∇�;w

)
�
= (F;w)� (6)

We approximate � in the polynomial space Vh= {v : v|�e ∈Pk(�e)}, and we approximate
each component of u in the subspace Wh of H 1(�), where Wh consists of continuous, piece-
wise linear polynomials. Denote these approximations by �h and uh. We also will utilize a
continuous approximation ��h ∈Wh to �, de�ned below.
In continuous time, the DG=CG scheme is outlined as follows:

• First, initial approximations �h(·; 0)∈Vh and uh(·; 0)∈ (Wh)2 are computed from the initial
data �0 and u0. This can be done by interpolation or L2 projection.

• For t¿0, �h is computed by

(@t�h; v)�e − (uh (�h + hb);∇v)�e + 〈A(uh; �−
h ; �

+
h ) · ne; v〉@�e =0; v∈Vh (7)

The numerical �ux A(uh; �−
h ; �

+
h ) ·ne ≈ Hu ·ne. We will discuss this term in detail below.

γ

ni

i

v v+

Figure 1. An edge �i with normal vector ni; v− and v+ are the values of v to the left and right of the
edge, as determined by the normal ni.
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• �h is then projected into the continuous space Wh by �nding ��h ∈Wh satisfying

(��h; w)� = (�h; w)�; w∈Wh (8)

In our implementation, mass lumping is used to approximate the integral on the left side
of (8). Furthermore, on elevation speci�ed boundary nodes, we set ��h to be equal to
the speci�ed elevation.

• Finally uh is computed from (6) by
(
@uh
@t
+ uh · ∇uh + �bf (uh)uh + fck× uh + g∇��h;w

)
�
= (F;w)�; w∈ (Wh)2 (9)

Note that (7) is conservative in the following sense: letting v=1 on �e and zero elsewhere,
we �nd ∫

�e
@t�h dx +

∫
@�e
A(uh; �−

h ; �
+
h ) · ne ds=0 (10)

Thus, the change in elevation is balanced by the numerical �ux A · ne through the boundary
of the element. As we will see below, this �ux is uniquely de�ned (i.e. continuous) on each
edge in the mesh. Thus, the DG scheme is both ‘locally conservative’ and ‘�ux continuous.’
We now describe in more detail the implementation of the scheme above.
Implementation of (7). Though (7) is valid for any polynomial degree k¿0, we have

implemented polynomials of order k=0 and 1. For k=1, we write

�h|�e ≡ �h; e + �x�h; e(x − xe) + �y�h; e(y − ye) (11)

where (xe; ye) is the barycentre of �e. Thus, there are three degrees of freedom for �h per
element, and the basis functions for P1(�e) are

{1; x − xe; y − ye}
For k=0, the x and y slope terms are omitted.
The time discretization of (7) is explicit. Given a time step �t¿0 and initial approximations

(�h(·; tn); uh(·; tn))≡ (�nh; unh), we integrate (7) forward in time using the explicit Euler method
if k=0, and using a second-order Runge–Kutta method if k=1. The second-order Runge–
Kutta method consists of computing two successive explicit Euler approximations, �n;1h and
�n;2h , keeping u

n
h �xed, and setting

�n+1h = 1
2(�

n
h + �

n; 2
h ) (12)

At each Euler step, a slope limiter is applied to the slope terms �x�h; e and �y�h; e to minimize
any overshoot or undershoot. For an interior triangle �e, with neighbouring triangles �e;1,
�e;2 and �e;3, we interpolate the constant cell averages in �e and each pair of neighbouring
triangles by linears, as described in Reference [47], resulting in three linear interpolants on �e.
We compare these linear interpolants to that produced using the DG method. The interpolant
with smallest gradient in magnitude is chosen as the linear approximation over the element.
For elements �e next to speci�ed elevation boundaries, the boundary condition is utilized
in the interpolation procedure. If �e lies on land boundaries, we re�ect the element and the
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GALERKIN METHODS FOR THE SHALLOW WATER EQUATIONS 69

solution across the land boundary, and treat this re�ected element as a neighbouring element
in the interpolation process.
The numerical �ux A(uh; �−

h ; �
+
h ) is evaluated using the Roe �ux as described in detail in

Reference [23]. This �ux is an upwind �ux which has been used in many �uid applications
with shocks and sharp gradients. In Reference [23], we showed how to apply this �ux when
using a �nite volume method (a DG method with k=0) for both continuity and momentum.
Here we only need to apply it to the continuity equation. Thus, we are only interested in the
�rst component of this �ux, which on edge �i, is de�ned as follows:

ni = (nxi ; n
y
i )= normal vector to �i

H±= �±
h + hb

q±= uhH±

[[H ]]=H+ −H−

[[q]]= ([[qx]]; [[qy]])= q+ − q−

â=
√
g(H− +H+)=2

�̂=
√
H+=H−

û=
q−

(H−)(1 + �̂)
+

q+

(H+)(1 + 1=�̂)

un= û · ni
�1 = min(un − â; 0)
�2 = min(un + â; 0)

�1 =
(â+ un)[[H ]]− [[q]] · ni

2â

�2 =
(â− un)[[H ]] + [[qx]]nxi − [[qy]]nyi

2â
A(uh; �−

h ; �
+
h ) · ni ≡ q− · ni + �1�1 + �2�2

Note that, on any element, the outward normal ne is either ni or −ni, thus A · ni is either
A · ne or −A · ne. Furthermore, if k=0, the midpoint rule is used to approximate the integral

〈A · ne; w〉@�e
That is, uh; �−

h and �
+
h are evaluated at the midpoint of the edge in computing A · ni. If k=1,

two point Gaussian quadrature is used. The integration of the other terms in (7) is exact,
assuming that hb is given as a continuous, piecewise linear interpolant of bathymetric data.
On elevation speci�ed boundaries, the boundary condition is enforced through the �ux A ·ne

by setting �+h equal to the speci�ed elevation. On land boundaries, A · ni is set to zero. On
other boundaries, without any prior knowledge of �, we simply set �+h = �

−
h .

Wetting and drying is implemented in (7) on each edge �i (unless this edge has already
been designated a land edge). In particular, an edge is determined to be ‘wet’ if H++H−¿0
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and ‘dry’ otherwise. For dry edges, we set A · ni = 0. For a wet edge, one of the elements on
either side could be dry. If, for example, H+60, then we modify the computation of A · ni
by omitting the calculation of �̂, rede�ning û= uh, and proceeding with the calculations given
above.
Implementation of (9). The implementation of the CG method (9) follows what has tra-

ditionally been done in ADCIRC [14]. In particular, mass lumping is employed in the �rst
term, and mostly explicit time stepping is used, except that ��h is evaluated at the new time
level tn+1.

3. NUMERICAL TESTING

We evaluate the error and convergence properties of the coupled DG=CG method and compare
it to the GWCE and DG methods in addition to examining the associated costs. In particular,
we examine a weakly non-linear version of the widely used quarter annular harbour test case
using four levels of grid resolution and three grid con�gurations. The quarter annular case
was developed by Lynch and Gray [48] for testing of SWE algorithms. It is a convenient
domain since tidal response is uniform across the 	 direction, and numerical solutions should
be as well. This uniformity also facilitates examination of spurious oscillations, as we can
compare adjacent nodal values along each radius. An analytical solution to the linearized
SWE exists for the domain [48]. The linearized SWE disregard advection and make a �nite
amplitude approximation (H � h) in addition to linearizing bottom friction. However, the use
of the linearized equations is not appropriate in this study for several reasons. First, the DG
methodology is inherently designed to use the �nite amplitude terms for incorporating elevation
boundary condition forcing into the continuity equation through the �ux term on element
boundaries. Second, we desire to develop a SWE model that will perform well for advective
�ows, and therefore these terms should be included in numerical testing. We therefore test
the SWE with non-linear advection and �nite amplitude terms but we linearize the bottom
friction terms. Since an analytical solution is not available for this form of the equations we
generate a highly resolved ‘truth’ solution which is the basis of our error analysis.
In order to assess solution quality, errors in the harmonic amplitudes of the M2 forcing

constituent for elevation and velocity are determined via comparison to the highly accurate
‘truth’ solution. Additionally, spurious oscillations are examined in each solution. All tests
are executed on four grid spacings so that a rigorous convergence study can be performed.
All three methods apply linear approximating polynomials and should lead to second-order
convergence within the interior of the domain for both elevation and velocity [45].
Boundary condition treatments di�er between methods, and will a�ect solution quality in

di�erent ways. Therefore, we examine accuracy, oscillations, and convergence both over the
entire domain and within a �xed interior portion of the domain in order to limit the in�u-
ence of boundary conditions. At elevation-speci�ed open ocean boundaries the GWCE method
applies an essential boundary condition by replacing the GWCE with the elevation bound-
ary condition value at all boundary nodes. Both the DG-based algorithms impose elevation
boundary conditions weakly via the �ux term, and use the Roe numerical �ux approximation
to compute the �ux through the boundary. The weakly imposed �ux boundary condition is
only applied to the continuity equation in DG=CG but in DG is applied to both the continuity
and momentum equations, and therefore speci�es both the elevation and velocity boundary
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conditions in a weak sense. The GWCE and DG=CG methods solve the momentum equation
at elevation-speci�ed boundaries using a one-sided approximation to the pressure gradient
term. This leads to a �rst-order accurate approximation for the spatial gradient in elevation
and degradation of the accuracy of the resulting velocity solution. At velocity-speci�ed bound-
aries, the GWCE and DG=CG methods enforce an essential boundary condition by setting the
normal �ux term in the continuity equation to zero and eliminating the normal momentum
equation. These essential boundary conditions can be considered to over-constrain the solu-
tion at velocity boundaries, but the e�ects of this are not well known. Note that only the DG
method has the advantage of weak boundary conditions that do not a�ect accuracy of both
the continuity and momentum equations as veri�ed in References [38, 45].
In order to investigate the relative advantages of each method, comparisons of the computa-

tional costs are made and discussed. Wall clock run times for each of the numerical methods
over a series of quarter annular grids are documented. The DG methodology leads to a larger
number of degrees of freedom than does CG for a conforming mesh, leading to expected high-
est costs for the DG method and lowest for GWCE. While factors such as matrix assembly
and coding e�ciency also a�ect cost, there are inherent cost di�erences between methods.

3.1. Test case

The domain is formed from a quarter annulus with an outer radius 500 000 ft from the origin
and an inner radius at 200 000 ft. The bathymetric pro�le increases quadratically from 10:0 ft
at the inner radius to 62:5 ft at the outer radius. Flow is driven by a M2 tidal forcing signal
(period of 12:42 h) which is applied uniformly at the outer radius as an elevation-speci�ed
boundary condition. The tidal forcing amplitude is ramped up using a hyperbolic tangent
function from 0 to 5 ft over the �rst 5 days of a 30 day run. The �ow propagates from the
outer radius towards the inner, and since the Coriolis e�ect is not considered, results along all
angles (	) at a given radius should be uniform. The remaining boundaries are treated as land
boundaries which prevent normal �ow. The GWCE uses essential conditions for all boundaries,
specifying elevation at the forcing boundary and elsewhere a no-normal �ow velocity boundary
condition in both the GWCE �ux integral and in the momentum equations (which may be
over-constraining the system at velocity boundaries). The DG method uses weak boundary
conditions, generated by way of the elemental �ux integral terms. The DG=CG method is
a combination of these two methods, using a weak boundary condition generated from the
boundary integral in the continuity equation to consider elevation boundary conditions, and
an essential condition for land boundaries that replaces the normal momentum equation with
no-normal velocity response as well as sets the elemental �ux integral to zero.
Weakly non-linear �ow conditions are generated within the domain due to the quadratically

varying bathymetry that becomes relatively shallow with respect to tidal response. Under the
in�uence of the bathymetric gradient, advection and �nite amplitude e�ects increase as depth
decreases approaching the inner boundary, generating overtides at integer multiples of the
forcing frequency within the inner half of the domain. It should be noted that they are at
most 10% of the M2 amplitude.
A linear bottom friction relationship is used and the friction term is set to a constant value

of 0:0001. For the GWCE solutions, the numerical weighting parameter �0 is set to 0:0001,
matching the bottom friction term. Eddy viscosity and Coriolis e�ects are not included. With
these small viscous terms, this system has very little inherent damping.
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There are three con�gurations of triangular �nite element discretizations tested here.
Atkinson et al. [49] have shown that these grid con�gurations can have di�erent dispersion
properties and therefore can exhibit di�erences in their solutions. Therefore, all three con�gura-
tions are tested here to examine di�erences that may exist with each method.
Figure 2 shows the 6eq grid, which is composed of six equilateral triangles about each node.
The 6b grid, shown in Figure 3, has six triangles about each node which are constructed from

Figure 2. 6eq grid con�guration.

Figure 3. 6b grid con�guration.
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GALERKIN METHODS FOR THE SHALLOW WATER EQUATIONS 73

bisected quadrilaterals. The 4–8 grid (Figure 4) is composed of an alternating pattern of four
and eight isosceles triangles grouped about each node.
In order to determine convergence behaviour, four levels of resolution were used for each

grid con�guration. The coarsest resolution has a nodal spacing of 50 000 ft measured in the
direction of propagation. Resolution is increased by repeatedly halving grid spacing to 25 000,
12 500, and 6250 ft. In order to ensure that spatial errors are dominant, a time step of 5:0 s is
used for the two coarsest grids, and 2:5 s for the two �nest grids. Under these conditions the
time step versus nodal spacing relationship corresponds to maximum celerity-based Courant
values of 0.0045, 0.0090, 0.0090, and 0.018 for the four grids. A GWCE solution on a highly
re�ned grid with a nodal spacing of 1562:50 ft (one quarter of the �nest grid) and a time
step of 0:5 s is used as a ‘truth’ solution. This highly re�ned solution is used to compute the
accuracy of the GWCE, DG, and DG=CG schemes and check the convergence rate. Errors
were also computed using a Richardson-based error extrapolation procedure which does not
rely on any ‘truth’ solution but instead compares results over a range of grid spacings [50].
Those results are very similar and con�rm what is found using the ‘truth’ solution and thus
are omitted here for brevity.
Model output is harmonically decomposed over the �nal 10 days of each run in order to

perform the error analyses. The elevation and radial velocity time series are decomposed into
tidal amplitude and phase information at each nodal location for the M2 constituent and its
overtides. In order to compute the error measures, the M2 constituent is separated into sine
and cosine components for elevation and velocity. These components of the M2 elevation and
velocity signals are used to obtain an error estimate and to quantify spurious modes.

3.2. Results

Model output generated by each solution method on the 6eq grid with the coarsest nodal
spacing (50 000 ft) is presented in Figures 5–7. The remaining grids show similar results and

Figure 4. 4–8 grid con�guration.
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Figure 5. GWCE results on 6eq with h=50 000 ft.

are omitted for brevity. The four M2 solution components from the harmonic analysis are
shown in each �gure, and each subplot gives a comparison of numerical results to the ‘truth’
solution generated using the GWCE method with a grid spacing of 1562:5 ft. The numerical
results are given every 50 000ft, corresponding to the radial locations where nodes are aligned.
The two opposing triangles show the adjacent nodal values that are most di�erent at the
speci�ed radial distance. Any di�erence between the triangular marks shows the size of the
largest node-to-node oscillation along that radius, a measure of oscillation in the �	 direction.
The GWCE method (Figure 5) matches the ‘truth’ solution although some small di�erences
do exist, as seen in velocity response toward the shallow end of the harbour. It appears that
the essential boundary condition on the velocity solution in the momentum equation along
with the no-normal �ux enforcement in the continuity equation is introducing error at the
land boundary. Also, the velocity solution appears to be inaccurate on the elevation forcing
boundary due to the �rst-order accurate boundary condition treatment within the momentum
equation. Note that no discernible oscillations exist, a basic characteristic of GWCE solutions.
The DG method (Figure 6) also matches the ‘truth’ solution very well. Slight oscillations are
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Figure 6. DG results on 6eq with h=50 000 ft.

observed in the velocity signal at the shallow end of the harbour, perhaps the result of the
elementally based, discontinuous nature of the DG solution. Also, while there are small errors
at the boundaries (particularly at the high-gradient inner boundary) due to a weak boundary
enforcement, the DG solution most closely matches the ‘truth’ solution in near-boundary
regions. This indicates its second-order boundary implementation is not degrading solution
quality on the interior, which does not appear to be true with the boundary implementation
of the other methods. Figure 7 shows results from the DG=CG method, which exhibits errors
at the shallow end of the harbour (as does the GWCE solution, which applies the same
boundary condition on velocity response there). The essential boundary condition on velocity
at the inner no-normal �ow boundary a�ects the quality of the elevation response. The weak
boundary condition on elevation on the elevation-speci�ed forcing boundary does not appear
to degrade the solution, similar to the DG response. Note that oscillations in the �	 direction
are minimal, although a slight oscillation exists between adjacent radii and can be noted in
the velocity sine result.
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Figure 7. DGCG results on 6eq with h=50 000 ft.

Error estimates are generated for all four solution components by comparing solution har-
monic output to the ‘truth’ solution at each nodal location. The root-mean-square (RMS) of
these nodal errors is then calculated as described in Equation (13), where e is the di�erence
between the ‘truth’ and computed solutions at each node and n is the number of nodes.

RMS=
[
n∑
i=1
e2i

/
n
]1=2

(13)

It should be noted that the DG and DG=CG algorithms project elemental-based results onto
adjacent nodes for analysis. The RMS error is calculated for all four levels of grid resolution to
study the convergence behaviour of each method. In order to estimate each convergence rate,
a line is �tted to the error data in a least-squares sense, and the slope of this line on the log–
log plot is reported in the legend. These error analyses are taken within the asymptotic range,
as con�rmed by Richardson-based error estimates which are consistent on all grid spacings.
We also calculate the RMS error over a subset of nodes on the interior of the domain in
order to limit the in�uence of low-order boundary conditions on convergence behaviour. This
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Figure 8. 6eq: RMS errors (—) and oscillations (· · ·) over all nodes.

subset is de�ned as all nodes greater than 50 000 ft from the boundary, which corresponds to
the interior nodes for the coarsest grid.
Oscillations in the 	 direction for each solution have been calculated. These node-to-node

oscillations are determined by comparing the solution at each node along a radius to values at
its neighbours. A measure of the oscillations for each method is then generated by computing
the RMS of the oscillations. As with the error evaluations, the RMS of the oscillations is
calculated over all nodes and over the interior set of nodes described above in order to
examine boundary condition e�ects.
6eq grid con�guration. Global convergence plots of RMS error and RMS oscillation versus

grid spacing for all solution components of the GWCE, DG, and DG=CG methods are shown
in Figure 8. These can be compared to convergence plots at locations on the interior away
from the boundary in Figure 9 in order to examine the e�ect of boundary implementation.
These are calculated only over nodes 50 000 ft or more from any boundary.
RMS errors in both �gures indicate that the DG method is generally the most accurate on

the 6eq grid, while the GWCE and DG=CG solutions are less accurate but are similar to each
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Figure 9. 6eq: RMS errors (—) and oscillations (· · ·) over interior nodes.

other. RMS errors are often smaller over the interior, where lower accuracy boundary treatment
e�ects are removed from the RMS calculation. Furthermore, convergence of RMS error on the
interior is close to second order for all three solutions. This often represents an increase in the
velocity solution convergence rate as compared to over the entire domain, although elevation
solution convergence rates calculated over the interior are similar to rates calculated over the
entire domain. In particular, GWCE and DG=CG velocity solution components converge at
an increased rate on the interior. Recall that at the elevation forcing boundary, the velocity
computation is �rst-order accurate for both of these methods. This �rst-order error a�ects the
convergence rate of the velocity solution, preventing it from reaching second order. The DG
solution experiences little di�erence in the convergence behaviour of its RMS error whether
over the interior or all nodes, con�rming that lower order boundary e�ects are not problematic
in the DG method. There is an exception in the DG velocity sine RMS error convergence,
which increases from 1.3 to 2.0 on the interior.
Comparisons of RMS oscillations for all methods shows that oscillations are generally

largest for the DG=CG solution and are comparable between the DG and GWCE solutions. The
only exception is the GWCE RMS oscillations for velocity calculated over the entire domain,
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which are larger than those from the DG solution and compare closely to the RMS oscillations
in the DG=CG velocity solutions. Note that these GWCE velocity solutions are a�ected by
the �rst-order boundary treatment at the elevation boundary as well as a over-constrained
boundary condition implementation at velocity boundaries. These boundary condition e�ects
may impart oscillations into the velocity solution.
RMS oscillations are generally smaller than RMS errors over the entire domain by one-

to-two orders of magnitude. However, when only interior nodes are considered, the RMS
oscillation can exceed the RMS error, as the RMS oscillations on the interior subset of nodes
tend to be larger than when all nodes are included. This suggests that boundary conditions
have oscillation-suppression tendencies in the vicinity of the boundary. This is likely related
to the fact that essentially enforced elevation and velocity values are by nature oscillation-free.
Oscillation reduction with respect to decreasing node spacing is between �rst and sec-

ond order for all methods. Elevation RMS oscillation convergence rates on the interior are
lower than on the entire domain for all methods, likely related to oscillation suppression at
the elevation-speci�ed boundary condition. For the GWCE and DG=CG methods (which both
impose a �rst-order response in the velocity solution at elevation-speci�ed boundaries), veloc-
ity RMS oscillation convergence rates are somewhat greater on the interior, where boundary
e�ects are minimized. This implies that the low-order boundary treatments are limiting re-
duction in oscillation size. Conversely, the DG method imposes weak boundary conditions
through the Roe �ux onto both the elevation and velocity �elds. The DG velocity �eld has
a modest decrease in its RMS oscillation convergence rate as does its elevation �eld on the
interior of the domain.
6b grid con�guration. Convergence behaviour on the 6b grid has been calculated as was

done with the 6eq grid. Figure 10 shows the RMS errors and RMS oscillations calculated over
all nodes, while the convergence behaviour on the set of interior nodes is shown in Figure 11.
Examination of RMS errors for each solution shows that there are many similarities to the

results found with the 6eq grid. In fact, the DG and GWCE error curves are almost identical
to those for grid 6eq. The DG method again has the most accurate solution, but on the 6b
grid, the GWCE method is generally more accurate than the DG=CG method. Again, RMS
error is often smaller over the interior than over the entire domain, since boundary e�ects
are minimized. First we compare convergence behaviour on 6b to 6eq using RMS error over
the entire domain. All methods have convergence rates between �rst and second order based
upon RMS errors calculated over the entire domain. The GWCE method again exhibits smooth,
consistent convergence rates close to second order for elevation solution components, but again
velocity convergence rates, particularly for the sine component, show reduced convergence due
to the boundary treatment. The DG results are very similar to those from the 6eq grid, showing
a convergence rate close to 2 for all solution components. Convergence rates for the DG=CG
method, however, are noticeably di�erent from the 6eq grid. While most results on the 6eq
grid are close to second order, on the 6b grid the convergence rates are generally in the range
of 1–1.5. When only considering the interior, again the convergence rates for all methods are
generally closer to second order. The GWCE method demonstrates noticeable improvement in
velocity convergence rates, which now are close to 2. The DG method does not experience
much di�erence in convergence behaviour between the interior and entire domain RMS errors,
as was seen in the 6eq results. Finally, the DG=CG results do not show improvement and
are comparable to convergence rates generated over all nodes. It appears that the 6b grid
con�guration hampers DG=CG convergence.
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Figure 10. 6b: RMS errors (—) and oscillations (· · ·) over all nodes.

Oscillations from the 6b simulations have been calculated as before. RMS oscillations in
the DG method are comparable to the RMS oscillations from the 6eq grid; however, the
GWCE RMS oscillations have increased somewhat and the DG=CG RMS oscillations have
increased dramatically. The DG=CG solution exhibits the largest RMS oscillations, which
over the interior set of nodes can be almost two orders of magnitude larger than DG RMS
oscillations, which are generally the smallest. The size of RMS oscillation seems to correspond
to the RMS error for each method since over the interior nodes the values tend to be quite
close. The larger DG=CG RMS oscillations over the interior seem to correlate to its larger
errors. Oscillations on the interior subset of nodes are larger than when examining all nodes
for the 6b grid, as was found in the 6eq results. Elevation RMS oscillation convergence
rates on the interior are less than those on the entire domain, as in the 6eq solutions. Also,
GWCE velocity RMS oscillations convergence rates are greater on the interior (as with the
6eq con�guration). The DG=CG solution does not experience such an increase for the 6b grid
con�guration, however. The DG solution experiences a more dramatic reduction in velocity
RMS oscillation convergence rates than on the 6eq grids, as they drop from greater than
second order to nearly �rst.
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Figure 11. 6b: RMS errors (—) and oscillations (· · ·) over interior nodes.

4–8 grid con�guration. The convergence behaviour of all methods on the 4–8 grid is shown
in Figure 12 and the convergence behaviour of these methods on the interior nodes of the
4–8 grid is shown in Figure 13.
RMS errors for the DG method are again the smallest, and the GWCE and DG=CG RMS

errors are comparable. The RMS errors on the interior remove lower order boundary e�ects as
with the 6eq and 6b grids, and therefore are smaller than the RMS errors over all nodes. RMS
error values and convergence rates for all methods on the 4–8 grid are closely comparable
to those found for the 6eq grid con�guration, and are close to second order over the interior
nodes. Recall that DG=CG convergence was hindered on 6b; 4–8 convergence rates and error
levels are close to 6eq values. The e�ects of the one-sided, �rst-order boundary treatment
of momentum equation is readily identi�ed in the GWCE and DG=CG velocity RMS errors,
which converge at a higher rate on the interior. The DG method does not show much di�er-
ence in convergence behaviour between RMS errors over the entire domain or the interior,
indicating its boundary condition treatment does not degrade solution quality.
Oscillations from the 4–8 grid simulations have been determined as before, and the results

show the 4–8 grid con�guration su�ers from the largest RMS oscillations of all grids. In
fact, on the 4–8 grid the methods show RMS oscillations that are larger than the RMS
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Figure 12. 4–8: RMS errors (—) and oscillations (· · ·) over all nodes.

errors at high resolution. The DG continues to exhibit the smallest RMS oscillations and the
DG=CG the highest, but the di�erences are small. As for the previous grid con�gurations,
elevation RMS oscillation convergence rates decrease on the interior as the e�ects of the low
oscillation boundary nodes are excluded. This decrease also holds true for the DG velocity
RMS oscillation convergence rates, as was found earlier. The GWCE and DG=CG velocity
RMS oscillation convergence rates are higher on the interior, as they were before, due to the
removal of possibly over-constrained, oscillatory velocity solutions at the boundary.

3.3. Computational e�ciency

Analysis of computational e�ciency for all three numerical methods is performed in order to
give a full comparison between the methods. Di�erences in discretization strategy between the
continuous and DG methodologies lead to di�erences in the number of degrees of freedom
and thus the number of operations per time step. Each strategy discretizes the three variables
(� and u) di�erently; in this paper we consider linear spatial approximations for all methods.
The CG-based GWCE solution discretizes the variables on each node (with N nodes per
grid) for a total of 3N degrees of freedom. The DG method discretizes each variable by
constructing linear approximations elementally (with M elements per grid) which results in
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Figure 13. 4–8: RMS errors (—) and oscillations (· · ·) over interior nodes.

9M degrees of freedom. The DG=CG algorithm is a combination of these approaches. The
continuity equation discretizes � elementally which leads to 3M degrees of freedom, and the
velocity �eld u is discretized nodally, which generates 2N degrees of freedom, for a total of
3M+2N . The number of triangular elements in a grid can be estimated as twice the number of
nodes for typical grids (M =2N ). Based upon the degrees of freedom operated on, the GWCE
method (3N ) will be most e�cient, DG most costly (18N ), and DG=CG (8N ) in between.
However, there are other factors a�ecting computational cost. The GWCE method solves a
more complex wave-type equation, increasing the number of terms by a factor of three to
nine depending upon the non-linear terms evaluated as compared to the primitive continuity
equation. This increases the cost per time step by an average of 6N–9N . DG employs an
explicit second-order Runge–Kutta time-stepping procedure which involves two solutions per
time step, raising cost to 36N . DG=CG employs the Runge–Kutta procedure on the continuity
equation (12N ) and then solves the momentum equations using the same procedure as the
GWCE method (2N ), leading to a total of 14N operations per time step. Once time stepping
is taken into account it can be seen that the DG=CG method avoids some of the cost of the
DG solution procedure. A range of additional factors will also a�ect solution cost: the GWCE
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itself requires the solution of a system of equations; integration and cost vary dramatically
between the solutions; the DG and DG=CG methods require the solution of the Riemann
problem; the DG and DG=CG methodologies employ a slope-limiting procedure over each
element’s edge for the elevation �eld; the DG=CG method requires a simple projection of the
local elementally expanded elevation solution into the continuous, nodally based space Wh;
and the GWCE coding has been extensively optimized while this is not the case for the DG
and DG=CG solutions. Finally, we have assumed that all methods can employ the same time
step, although in practice the explicit Runge–Kutta scheme in DG and DG=CG may require
a smaller time step than the GWCE solution.
In order to verify these cost estimates, a series of runs were done to document run times

for each method. Three versions of the 6b grid were run, with resolutions of 50 000, 25 000,
and 12 500 ft in the direction of propagation, and all tests employed a 2:5 s time step. The
results verify the relative cost estimates of the methods. The timing runs were done on a
SUN Blade 2000 with a single 1:015 GHz CPU and 1 GB memory running Solaris 8 and
SUN’s native compilers. Recorded wall clock run times are shown in Table I and are plotted
against the number of nodes in Figure 14. The results show that all methods increase run

Table I. Run time (min).

Grid Nodes GWCE DG DG=CG

1 63 8 33 13
2 221 26 134 49
3 825 106 480 202
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Figure 14. Run time.
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time linearly with the number of nodes. Furthermore, the GWCE method is shown to be
approximately twice as e�cient as DG=CG, which itself is more than twice as e�cient as
DG. These results con�rm that the increased degrees of freedom of DG methodologies do
increase cost as compared with CG methods.

4. CONCLUSIONS

A novel numerical approach to modelling the SWE has been presented and compared to
existing methods. The coupled continuous=discontinuous (DG=CG) Galerkin �nite element
method is a mass-conserving, �ux-continuous numerical scheme that is not plagued by spurious
modes or instabilities. Solutions from the GWCE, DG, and DG=CG algorithms are compared
on the quarter annular test case using three di�erent grid con�gurations. The DG method is
shown to be the most accurate, while the GWCE method may only be slightly more accurate
than the DG=CG method. Once boundary condition e�ects are removed, the convergence rate
of RMS errors for all methods is second order, although the DG method does not experience
much change in its convergence rate whether boundary condition e�ects are considered or
not, indicating its boundary condition treatment is not degrading accuracy and is second
order. However, the RMS error is often less when only interior nodes are included in the
RMS calculation for all methods. It is observed that the GWCE and DG=CG methods su�er
from a low-order approximation of the pressure gradient term in the momentum equation at
elevation boundaries, which degrades the accuracy of the velocity solution near the forcing
boundary.
Examination of node-to-node oscillations along a constant radius line shows that DG tends

to have the smallest oscillations and DG=CG the largest. The RMS oscillation tends to increase
on the interior of the domain because boundary nodes are removed from the RMS calculation
and these appear to minimize oscillations, as they are constrained by the boundary condition.
Furthermore, elevation RMS oscillation convergence rates decrease on the interior because
the oscillation-free boundary nodes are not considered. This e�ect also holds true for the
DG velocity solution, which suppresses oscillations near the boundary due to the numerical
boundary �ux integral term on both the continuity and momentum equations (and thus both the
elevation and velocity �elds). However, velocity RMS oscillation convergence rates increase
on the interior for the GWCE and DG=CG solutions, perhaps due to an over-constrained
essential velocity boundary condition implementation at no-normal �ow velocity boundaries.
Computational e�ciency of the three schemes has been tested over a series of grids. The

GWCE method is shown to be most e�cient, with the DG=CG being less and the DG method
most costly. This is expected considering that DG methodologies increase the number of
degrees of freedom, and run times bear this out. The cost comparison, however, is based on
the number of elements and not the overall accuracy of the methods.
In conclusion, it can be seen that there are advantages and disadvantages to each of the three

methods. The GWCE solution has been widely used and appropriately so; it is an e�cient
numerical scheme that is accurate (although less than DG), converges at second order, and
suppresses spurious oscillations. However, it su�ers from a complex structure that is di�cult
to analyse, is dependent upon the selection of the numerical weighting parameter �0, and is
known to su�er mass imbalances as well as perform poorly for highly non-linear �ows. It is
not an appropriate algorithm for problems with non-smooth velocity pro�les as it does not
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have the capability to handle these highly advective conditions. The DG method addresses
many of its �aws (it satis�es continuity, can handle highly non-linear �ows including shock
conditions, is easily coded, and has been shown to be highly accurate). However, it is a costly
approach to solving the governing equations. The novel DG=CG method is a combination of
these two approaches. It provides a mass conserving solution while reducing the cost of the
full DG implementation. However, it is shown to be somewhat less accurate than DG as well
and is susceptible to oscillations which limits its capability for cases with non-smooth velocity
pro�les, an area in which the GWCE is de�cient but the full DG method bring advantageous.
Finally, we note the use of equilateral �nite elements (the 6eq grid con�guration) is ad-

vantageous, as it exhibits the smallest errors and oscillations. Conversely, triangular elements
composed of bisected quadrilaterals (the 6b grid con�guration) appear to reduce the accuracy,
especially with the DG=CG solution.
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