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SUMMARY

This work presents a study on the performance of nodal bases on triangles and on quadrilaterals for
discontinuous Galerkin solutions of hyperbolic conservation laws. A nodal basis on triangles and two tensor
product nodal bases on quadrilaterals are considered. The quadrilateral element bases are constructed from
the Lagrange interpolating polynomials associated with the Legendre–Gauss–Lobatto points and from
those associated with the classical Legendre–Gauss points. Settings of interest concern the situation in
which a mesh of triangular elements is obtained by dividing each quadrilateral element into two triangular
elements or vice versa, the mesh of quadrilateral elements is obtained by merging two adjacent triangular
elements. To assess performance, we use a linear advecting rotating plume transport problem as a test
case. For cases where the order of the basis is low to moderate, the computing time used to reach a given
final time for the quadrilateral elements is shorter than that for the triangular elements. The numerical
results also show that the quadrilateral elements yield higher computational efficiency in terms of cost to
achieve similar accuracy. Copyright q 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Discontinuous Galerkin (DG) finite element methods are particularly well-suited for the solution
of propagation- and convection-dominated problems with or without sharp gradients in the forcing
functions and/or flows. DG methods, conceptually similar to finite volume methods, inherently
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preserve mass perfectly on the elemental level, which make them ideal for coupling flow and
transport models. Additional advantages of DG methods are their high order of accuracy and their
high scalability for parallel implementation when explicit time integration schemes are employed.
As DG methods use discontinuous approximations, they allow the use of an arbitrary order of
polynomial approximation in each element and can accommodate non-conformal meshes without
a continuity requirement on the trial functions along element boundaries (see [1, 2] for reviews of
the DG methods). These features render them ideally suited for an adaptive discretization with h
(mesh) and p (order of polynomial) refinements.

One of the many areas in which DG methods have made significant impact is the solution
of the Shallow Water Equations (SWE) [3–7], which are used in modeling many advection and
propagation flow processes in coastal regions, such as hurricane induced flooding, debris flows,
tsunami waves, and many others. Simulations of environmental fluid flows in coastal regions
normally involves large, geometrically complicated domains and integration over long periods of
time. These situations necessitate an accurate and efficient solution of the SWE. While DG methods
have a number of advantages, one disadvantage, in comparison with Continuous Galerkin (CG)
methods on a given mesh, is the larger number of degrees of freedom (DOFs), which consequently
translate into greater computational costs. The preliminary comparative study in [5] of the CG and
DG method for SWE finds that, on serial machines, the cost per time step of the DG approach is
four to five times more expensive than that of the CG approach when comparing similar order of
interpolation on identical meshes. At the same time, the study in [8] finds that the DG approach
is significantly more efficient on an accuracy per DOF basis and on large-scale parallel machines.
It is noted, in these studies, that triangular meshes are used.

The motivation behind this work stems from the concept that, for roughly the same element
size, a mesh of quadrilateral elements would consist of roughly half as many elements as a mesh of
triangular elements (a quadrilateral element may be obtained from merging two adjacent triangular
elements). Furthermore, the number of edges in the quadrilateral mesh is roughly two-thirds that
of the triangular mesh. We note that, for DG methods, evaluating the edge integral is one of the
major computational costs. From these observations, one might expect that the use of quadrilateral
elements may improve the computational efficiency of DG schemes. To gain more insight into
these ideas, we conduct a study of the performance of DG methods on triangles and quadrilaterals.
We consider a solution of hyperbolic conservation laws using the so-called nodal DG methods
[9, 10] in this investigation. The nodal DG method utilizes a nodal Lagrange interpolation basis
as the approximating basis functions, which provides a simple and generic means to treat a
(nonlinear) flux term appearing in the hyperbolic conservation laws. For the quadrilateral element,
the nodal bases used are obtained by the tensor product of a one-dimensional (1D) Lagrange
basis instead of working with a space of higher dimensional polynomials in a strict sense. The
numerical experiments of a two-dimensional (2D) linear transport problem show an optimistic
outcome wherein for low to moderate order bases, the computing time used to reach the final time
with the quadrilateral elements is shorter than that of the triangular elements. Furthermore, the
quadrilateral elements are more computationally efficient in term of the cost to achieve a specific
error level.

In this paper, a nodal DG formulation for hyperbolic conservation laws is first summarized.
Subsequently, we describe the nodal bases on triangles and on quadrilaterals. For quadrilateral
elements, we also discuss the strategy we use to efficiently evaluate the elemental matrices required
in the DG scheme. Lastly, we present the results of numerical experiments on a rotating Gaussian
plume problem in Section 3, and draw some conclusions of the study in Section 4.
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1338 D. WIRASAET ET AL.

2. METHODOLOGY

2.1. Discontinuous Galerkin method for Hyperbolic conservation laws

We consider the numerical solution of a 2D scalar conservation law of the form,

�u
�t

+∇ ·f(u,x, t)=0, x∈�∈R2, t ∈R+
0 , (1)

where f=( fx , fy) is a nonlinear flux. The equation is augmented with appropriate boundary
and initial conditions. For the spatial discretization using DG, the solution u is replaced by a
discontinuous approximate solution uh , which, in each element K , belongs to a finite dimensional
approximation space V (K ). The approximate solution on the element K is then obtained by
requiring that, ∫

K

�uh
�t

vh dx−
∫
K
f(uh) ·∇vh dx+

∫
�K

f̂·nvh ds=0, (2)

for all vh ∈V (K ), where n represents the outward-pointing unit normal vector. The so-called
numerical flux f̂ (also known as the Riemann solver) resolves the flux f(uh) being multiply defined
on the element interface arising from the fact that the approximation is not continuous across the
element boundary. The numerical flux, which depends on the traces from both sides of the element
interface, is essential for the stability, convergence, and efficiency of the DG method (see examples
of different numerical fluxes in [11, 12]).

In this work, we consider the simple Lax–Friedrichs flux for the numerical flux. To define the
flux, consider two adjacent elements K− and K+ and let e be their common edge, which is not
necessarily an entire edge. The local Lax–Friedrichs flux for x∈e is given by

f̂= f(u−
h )+f(u+

h )

2
+C

2
n∓(u∓

h −u±
h ), (3)

where (u−
h , u

+
h ) are the solution value at x of the element K− and of the element K+, n− =−n+,

respectively, and C corresponds to the largest value, on the edge e, of the local maximum flux
Jacobian

max
u∈[u−

h ,u+
h ]

∣∣∣∣n· �f
�u

∣∣∣∣ . (4)

It is noted that the boundary conditions are enforced weakly through the numerical flux (by properly
specifying an exterior state in the numerical flux at the physical boundaries such that the desirable
conditions are achieved in a weak sense).

Here, we use a nodal basis of Pp(K ), a space of polynomials of degree of at most p, to
approximate the solution in each element K . Let {�i }i=1,...,Np be a nodal basis associated with
the interpolation points {xi }i=1,...,Np , xi ∈K . The nodal basis functions possess the so-called
interpolation property,

�i (x j )=�i j . (5)
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The details of the nodal basis functions used in this work are discussed in the subsequent sections.
The approximate solution in terms of the basis functions is defined by

uh =
Np∑
i=1

ũi (t)�i (x), x∈K , (6)

where ũi (t) are the time-dependent expansion coefficients. Owing to the interpolation property, the
value of ũi (t) corresponds simply to that of the approximate solution at its associated interpolation
point, i.e. ũi (t)=uh(xi , t). Instead of treating the nonlinear flux term in a conventional manner,
the term is approximated by the nodal representation as follows:

fx (uh,x, t)≈(IN fx )(x)≡
Np∑
i=1

f̃x,i (t)�i (x), (7)

where the coefficient is defined by f̃x,i (t)= fx (ũi ,xi , t) (the nodal representation of the y-directed
flux is defined analogously). With (5) and (7) at hand, the statement (2) is equivalent to the
following system of ordinary differential equations (ODEs):

Np∑
j=1

(
mi, j

dũ j

dt
−sxi, j f̃x, j −syi, j f̃ y, j

)
+
∫

�K
f̂h ·n�i ds=0, i=1, . . . ,Np, (8)

where entries of the elemental mass matrix and of the elemental stiffness matrices are given,
respectively, by

mi, j =
∫
K

�i� j dx (9)

sxi, j =
∫
K

��i

�x
� j dx, syi, j =

∫
K

��i

�y
� j dx. (10)

The solution procedure consists of integrating these ODEs for the expansion coefficients and
subsequently substituting the resulting coefficients into (6) to obtain the approximate solution.
In (8), the expansion coefficients from different elements appear solely in the numerical flux
term; therefore, the global mass matrix of the DG method is block diagonal and, consequently,
can be inverted in an elementwise fashion. Moreover, the elemental mass matrix, its inverse,
and the elemental stiffness matrices can be pre-computed and stored at the initial stage of the
simulation. The situation is far simpler for triangular elements and rectangular elements than for
curvilinear elements. Since, for these elements, there is a geometric transformation with a constant
Jacobian mapping between the physical element and the reference element (an example of a typical
geometry of a triangular reference element is {(�,�)|�,��−1 and �+��0} and of a quadrilateral
reference element is {(�,�)|(�,�)∈[−1,1]2}), the calculation of elemental matrices amounts simply
to appropriately scaling the elemental matrices associated with the reference element.

2.2. Triangular nodal element

For the triangular elements, we use the nodal basis on a triangle with a set of interpolation points
described in [9, 10, 13]. These nodal bases on the reference triangle I ={n=(�,�)|�,��−1 and �+
��0} are constructed as follows (note that an arbitrary triangular domain K is related to the
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1340 D. WIRASAET ET AL.

reference triangle I by an appropriate mapping xK (n) : I →K , such as an affine mapping [14]).
Let {�i (n)}i=1,...,Np be the Dubiner basis of Pp(I ) [15] (in general, {�i (n)} can be an arbitrary
basis of Pp(I ) [14]). The Dubiner basis is orthonormal over the reference triangle and the basis
functions are polynomials. They are the products of Legendre and Jacobi polynomials and thus
can be evaluated in an efficient manner. The number of basis functions is

Np = (p+2)(p+1)

2
(11)

for a given order p∈N. For a given set of interpolation points, {ni }i=1,...,Np , the nodal basis
functions {�i }i=1,...,Np are constructed by requiring that,

f (n)=
Np∑
i=1

f̃i�i (n)=
Np∑
i=1

f̂i�i (n), (12)

and that the nodal functions �i satisfy the interpolation condition (5), i.e. �i (n j )=�i j . As a result,
the transformations between two representations can be determined by

f̃i =
Np∑
j=1

Vi, j f̂ j , i=1, . . . ,Np, (13)

�i (n)=
Np∑
j=1

V j,i� j (n), i=1, . . . ,Np, (14)

where the generalized Vandermonde matrix V is defined by

V=(Vi, j ), Vi, j =� j (ni ). (15)

The nodal basis function can, therefore, be defined as a combination of the Dubiner basis functions
as follows, given that V is invertible,

�i (n)=
Np∑
j=1

(V−1) j,i� j (n), i=1, . . . ,Np. (16)

In practice, the explicit form of the nodal basis functions is rarely needed. Interpolated values at
desired points (other than that of the interpolation points) are obtained by first calculating the modal
coefficients { f̂i } from the nodal coefficients { f̃i } by means of inverting (13) and subsequently
computing the interpolated values through the modal representation.

The generalized Vandermonde matrix that is well-conditioned leads to a well-behaved interpo-
lation. This can be obtained by the use of a set of interpolation points with certain distributions.
Here, we use the set of interpolation points, described by Hesthaven [10, 13], which yields this
desirable effect. Figure 1 shows, as examples, the set of interpolation points for p=2, 4, 6, and 8
on I . The interpolation points have Legendre–Gauss–Lobatto (LGL) node sets along the edges and
dense interpolation points adjacent to the boundary. The so-called Fekete points [14] are another
example that produces a well-conditioned generalized Vandermonde matrix.

2.3. Quadrilateral nodal element

For quadrilateral elements, instead of working with Pp(Q), the approximation space on the
reference square Q=[−1,1]2 is selected as Pp([−1,1])×Pp([−1,1]), the tensor products of

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 64:1336–1362
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Figure 1. Distribution of interpolation points for the Lagrange polynomials
of degree p=2, 4, and 8 on the reference triangle.

Pp([−1,1]), a space of 1D polynomials of degree of at most p. Let {Pi (x)}i=0,...,p be the
normalized Legendre polynomials on [−1,1], a 2D orthonormal basis on Q is defined by

�(p+1) j+i+1(n)≡ Pi (�)Pj (�), 0�i, j�p. (17)

The number of basis functions in this case is

Np =(p+1)2. (18)

A nodal basis {�i (n)}i=1,...,Np is then constructed in an identical way described previously for a
given set of interpolation points {ni }i=1,...,Np . Here, we consider the following two different sets
of interpolation points with (i) an LGL distribution and (ii) a Legendre–Gauss (LG) distribution.
They can be described generically as

n(p+1) j+i+1=(xi , x j ), 0�i, j�p,

where {xi }i=0,...,p are the zeros of (1−x2)d(Pp−1(x))/dx for the LGL nodal set and the classical
Gauss points, which are the zeros of the Legendre polynomial Pp(x), for the LG nodal set. Figure 2
depicts the nodal sets for p=4. It is noted that all points of the LG nodal set reside in the interior
part of Q. The nodal basis functions associated with the LG nodal set also form an orthogonal
basis. This can be verified by using the fact that the 2D Gauss quadrature,

q(p+1)i+ j+1≡wiw j , 0�i, j�p, (19)

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 64:1336–1362
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(a) (b)

Figure 2. Distribution of interpolation points for the Lagrange polynomials of p=4 on the reference
square: (a) Legendre–Gauss–Lobatto points and (b) Legendre–Gauss points.
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Figure 3. Mapping of a curvilinear element.

which is a tensor product of the 1D classical Gauss weights {wi }i=0,...,p of the Gauss points,
integrates exactly polynomials in P2p+1([−1,1])×P2p+1([−1,1]). Since the LG nodal set is
identical to the 2D Gauss points, the following orthogonal relation holds∫

Q
�i� j dn=

Np∑
n=1

qn�i (nn)� j (nn)=qn�in� jn =qi�i j , (20)

for the nodal basis functions defined on this type of nodal set. Note that the nodal basis functions
defined on the LGL nodal set do not form an orthogonal basis.

The connection between Q and a possibly curve-edged quadrilateral domain K can be established
through an appropriate mapping xK (n) :Q→K (see Figure 3), such as a transfinite mapping [16]
or an isoparametric mapping [17]. Assume that such a mapping and its inverse exist. For notational
simplicity, the mapping is denoted by x= x(�,�) and y= y(�,�). The elemental mass matrix is
equivalent to ∫

K
�i (x)� j (x)dx=

∫
Q
J (�,�)�i (n)� j (n)dn, (21)
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where J (�,�)=|�(x, y)/�(�,�)| is the Jacobian of the geometry transformation. Except for rect-
angular elements K (with a bilinear interpolation for xK (n)), the value of the Jacobian J (�,�) is
not constant.

In general, to compute such an integral accurately, the Gauss quadrature of a certain order,
depending on the form of J (�,�), is employed. Here, we opt for a less accurate approach; however,
the elemental matrices can be calculated more efficiently. We first describe this approach for the
nodal basis with the LG nodal set. In this case, we approximate the integral using the LG nodal
set and its weight (19) as a quadrature, i.e.∫

K
�i (x)� j (x)dx≈ma

i, j ≡
Np∑
n=1

J (�,�)|nnqn�i (nn)� j (nn)= J (�,�)|ni qi�i j . (22)

This approach yields a diagonal lumped mass matrix. The stiffness matrices are computed with
the following formula:∫

K

��i (x)

�x
� j (x)dx≈sa,x

i, j ≡
Np∑
n=1

D�
n,i

��

�x

∣∣∣∣
nn

ma
n, j +

Np∑
n=1

D�
n,i

��

�x

∣∣∣∣
nn

ma
n, j , (23)

where D�
n,i =(��i/��)|nn , D�

n,i =(��i/��)|nn represent the derivative matrices and ��/�x |nn ,
��/�x |nn are the partial derivatives of the inverse mapping x−1

K , which are typically obtained from,⎡⎢⎢⎢⎣
��

�x
��

�y

��

�x
��

�y

⎤⎥⎥⎥⎦= 1

J (�,�)

⎡⎢⎢⎢⎣
�y
��

−�x
��

−�y
��

�x
��

⎤⎥⎥⎥⎦ , (24)

given that the Jacobian is non-zero. Note that a formula for the approximation of s yi, j corresponds
to the result of replacing x in (23) by y. In this approach, the derivative matrices of the reference
element can be pre-computed beforehand once and for all (since there are only two derivative
matrices of dimension Np×Np, this would require a small amount of memory for storage). It is
worth noting that for straight-edged quadrilateral elements, Equation (22) yields the exact mass
matrix, provided that xK (n) is a bi-linear interpolation of the four vertices. Furthermore, with the
bi-linear interpolation for xK (n), Equations (22) and (23) are exact for rectangular elements.

For the nodal basis with the LGL nodal set, the natural quadrature weights associated with
this nodal set are that of the tensor products of the 1D Gauss–Lobatto weights [18]. The use
of the 2D Gauss–Lobatto quadrature leads to the approximate elemental matrices having forms
that are identical to (22) and (23) (where {ni } and {qi } are understood as the LGL nodal set and
the 2D Gauss–Lobatto weights, respectively). However, the 2D Gauss–Lobatto quadrature, which
integrates exactly polynomials in P2p−1([−1,1])×P2p−1([−1,1])), is less accurate than the 2D
Gauss quadrature. To obtain more accurate elemental matrices, we employ instead the 2D Gauss
quadrature (i.e. the LG nodal set and its associated weight) for the integration. This strategy yields
the following approximate mass matrix,∫

K
�i (x)� j (x)dx≈ma

i, j ≡
Np∑
n=1

Ṽn,i

Np∑
l=1

ma,LG
n,l Ṽl, j , (25)
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and the following stiffness matrix∫
K

�i (x)

�x
� j (x)dx≈sa,x

i, j ≡
Np∑
n=1

Ṽn,i

Np∑
l=1

sa,x,LG
n,l Ṽl, j . (26)

In the above equations, ma,LG
i, j and sa,x,LG

i, j are the approximate mass matrix and the approximate

stiffness matrix associated with the LG nodal basis discussed above. The matrix Ṽi, j , defined by,

Ṽi, j =
Np∑
l=1

(VLG)i,l(V
−1
LGL)l, j , (27)

interpolates the function values on the LG nodal set from the function values on the LGL nodal
set. Here, VLGL and VLG are the generalized Vandermonde matrices associated with the LGL
nodal set and the LG nodal set, respectively. Note that the matrix Ṽi, j and its inverse can be
pre-computed and stored at the initial phase of the simulation.

In practice, especially in explicit time integration, it is the result of the matrix–vector multiplica-
tion of the elemental matrices and a given vector that is required. The matrix–vector multiplication
of these matrices with a given vector can be determined by a succession of matrix–vector multipli-
cations described by the formulae given above (which involve the matrices defined on the reference
element and the diagonal matrices involved with the coordinate transformation). Therefore, it is
not necessary to explicitly form the elemental matrices, thus reducing the storage required.

3. NUMERICAL EXPERIMENTS

We use a linear transport problem in order to assess the performance of the nodal DG method
on triangular elements and on quadrilateral elements. Such a problem is governed by (1) with the
following flux term:

f=a(x)u=(a1(x)u,a2(x)u). (28)

A test case involves the advection of a scalar field of a plume driven by a rotating velocity field in
a square computational domain. More specifically, the advection velocity considered is given by

(a1,a2)=(−�y,�x), (29)

where � is a constant angular velocity. The initial condition of the scalar field is the Gaussian
plume centered at xc,

u(x, t=0)=exp(−�|x−xc|2), �>0. (30)

The computational domain is square [−L , L]2, where L is sufficiently large.
The numerical experiments are undertaken with the following parameters: �=5	/6, xc=

(0,3/5), �=125×1000/332, and L=1. A computer code employed in the numerical computa-
tions is mainly written in Fortran 90 and compiled using an Intel� Fortran compiler version 11.
The fortran Basic Linear Algebra Subprograms (BLAS) level 2 [19] is used for matrix–vector
multiplications on the elemental level. All computations are conducted on a workstation with two
dual-core AMD Opteron� 2220 processors, 4GB RAM, and a 32-bit Linux operating system (note

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 64:1336–1362
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that the operating system is able to use up to 3GB of RAM). Computing times reported are an
average of two identical simulations.

Here, we assess the performance of the DG discretization using the nodal bases on different
element types described in the previous section, i.e. the nodal basis on triangles, the nodal basis of
the LGL and of the LG nodal set on rectangles and on skewed rectangles (which refer to convex
quadrilaterals). To fulfill this purpose, we consider the nodal bases of order ranging from p=1
up to p=8 and consider three mesh configurations. The first configuration consists of triangular
elements which are devised by bi-secting square elements. The next configuration is a mesh of
square elements. For the last configuration, a mesh of skewed-rectangular elements is employed.
In each configuration, the problem is solved on three different resolutions, namely, from coarsest
to finest, h, h/2, and h/3. Figure 4 illustrates the coarsest mesh of each configuration. The meshes
of different resolutions for the first and second configurations are built from the uniform grid of
(M+1)×(M+1) with M=20, 40, and 60, respectively. For the third configuration, the coarsest
mesh (of resolution h) is built by slightly relocating the interior vertices of the uniform grid of
21×21. The relocation is carried out in a random fashion and the distances shifted vary from 0 to
0.02 in each direction. The two finer meshes are then obtained by dividing each skewed rectangle
into 2×2 and 3×3 skewed rectangles. Note that the meshes of resolution h, h/2, and h/3 have
element sizes (approximately) 2/20, 2/40, and 2/60, respectively. The coarsest quadrilateral meshes
consist of 202 elements. The number of elements of the two finer meshes are four and nine times
that of the coarsest mesh. For the triangular meshes, the numbers of elements are twofold that of the
quadrilateral meshes of the same (so-called) resolution. Note that the total number of nodal points,
denoted by Nt , corresponds to the summation of the number of nodal points of each element.

The time-dependent system of ODEs arising from the DG spatial discretization is numerically
integrated by an explicit fourth–fifth order Runge–Kutta–Fehlberg (RKF45) method (see a detailed
account in [20]). RKF45 has a mechanism to automatically select the step size �t used in the
integration to control the accuracy of the solution. The integrator utilizes the fourth-order scheme
and the fifth-order scheme that uses all values of the sub-steps of the fourth-order scheme. The
difference of approximate solutions from the two schemes gives an estimate of the errors, which
can then be used to adjust the step size. In this work, we use the RKF45 subroutine written by
Shampine et al. [21]. In this subroutine, the accuracy of the solution is controlled by the parameter
named relerr and abserr (relerr > abserr), denoted here as εr and εa . The values of
these parameters are set to sufficiently small values in order to keep an error from the temporal
discretization small when compared with the spatial error. For the h-meshes, we use (εr , εa)=
(10−5,10−8) for all p=1–8. These values are also employed in the test cases with the h/2- and
h/3-meshes except in those where the order of basis p is high. In these cases, smaller values of
(εr , εa) are used to keep the temporal error sufficiently small. More specifically, the value of these
parameters are set to (10−7,10−11) for the test cases with p=8 for the h/2-meshes and with p=7
and 8 for the h/3-meshes.

3.1. Accuracy

Figure 5 shows a snapshot at various times of the approximate solution computed on the coarsest
triangular mesh using the DG method with p=1. The approximate solution computed on the
coarsest skewed-rectangular mesh using the DG method with the LGL nodal set of p=1 is shown
in Figure 6. Note the discontinuities of the approximate solution at the element edges. It can
be observed in these figures that the approximate solution exhibits a significant decay in height
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(a)

(b)

(c)

Figure 4. Three configurations of computational meshes of resolution 20×20: (a) triangular elements;
(b) square elements; and (c) skewed-rectangular elements.
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Figure 5. Numerical solution at various times obtained with Lax–Friedrichs nodal DG method on triangles
with p=1 and a mesh of 2×202 elements of size h=2/20.

(as an example, in Figure 6, the height of the approximate plume at t=2.4, the time at which
the exact plume makes one complete loop, reduces approximately 70%) and a broadening of the
plume. This indicates the numerically diffusive nature of the solution for the selected size of the
elements and p. The effect of numerical diffusion reduces as computational resolution increases.
The resolution can be increased by increasing the order of the basis functions p or decreasing the
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Figure 6. Numerical solution at various times obtained with Lax–Friedrichs DG method on skewed
rectangles with the LGL nodal set of p=1 and a mesh of 202 elements of size h=2/20.

size of the elements. Figures 7 and 8 show the approximate solutions at t=2.4 obtained using
the LGL nodal set on the skewed-rectangular elements when a higher resolution than that used
in Figure 6 is employed. Figures 7(a), (b) show the approximate solutions using p=2 and p=3
when the skewed-rectangular mesh of h-resolution is used (the triangles shown in this figure are
used only for plotting purposes so that the solution at the interior points of the elements can be
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Figure 7. Numerical solution at t=2.4 obtained from Lax–Friedrichs DG method
using the nodal basis with LGL nodal set on skewed-rectangular elements:

(a) p=2, h=2/20, Nt =3600 and (b) p=3, h=2/20, Nt =6400.

visualized). The solution depicted in Figures 8(a), (b) is solved on the skewed-rectangular mesh of
resolution h and h/2 while the order of basis functions p is held fixed at unity. Note the considerable
reduction of the effect of the numerical diffusion when compared with the approximate solution
shown in Figure 6, which is computed using the lower resolution setting (note that, for example,
the height of the approximate plume plotted in Figure 7(b) reduces approximately 4%).

In Figure 9, we plot the errors in the approximate solutions at t=0.8 as a result of varying the
orders of the nodal basis p (where the computational mesh is held unchanged). Figures 9(a)–(c)
report the results when the problem is solved on the meshes of resolution h, h/2, and h/3,
respectively. Here, the maximum norm over the nodal points,

‖g‖N,∞ = max
i∈{1,...,Nel}

(
max
x∈XKi

|g(x)|
)

(31)

where Nel denotes the number of elements in a given mesh, XKi the set of nodal points of the
element Ki , is used in measuring the error. The results clearly indicate the exponential convergence
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(b)

(a)

Figure 8. Numerical solution at t=2.4 obtained from Lax–Friedrichs DG method
using the nodal basis with LGL nodal set on skewed-rectangular elements:

(a) p=1, h=2/40, Nt =6400 and (b) p=1, h=2/60, Nt =14400.

of the DG methods with the nodal basis on triangles and the nodal basis on quadrilaterals with
the LGL and LG nodal set. It can be observed from this figure that, for the same order of p
and the mesh of the same resolution, the nodal basis on quadrilaterals (both squares and skewed
rectangles) yields, for most cases, more accurate solutions than the basis on triangles. For the
quadrilateral elements, the approximate solutions computed using the nodal basis with the LG
nodal set, for most cases, are more accurate than that of using the LGL nodal set. Furthermore,
it can be noticed that, for the same type of nodal set, the curves representing the errors in
the approximate solution from employing the skewed-rectangular elements and from employing
the square elements are almost indistinguishable. This implies that the use of (mildly) skewed-
rectangular elements does not deteriorate the accuracy of the approximate solution. As the exact
solution of this particular problem is smooth, an increase in resolution by raising the order of basis
p dramatically improves the accuracy of the approximate solution at the expense of a small increase
in the number of DOFs (which corresponds to the number of nodal points Nt ). Note that raising
the order of the basis p by one order increases the DOFs for triangle elements by 1+2/(p+1)
times and for quadrilateral elements 1+2/(p+1)+1/(p+1)2 while the accuracy improves at an

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 64:1336–1362
DOI: 10.1002/fld



A PERFORMANCE COMPARISON OF NODAL DG 1351

0
(a) (b)

(c)

1 2 3 4 5 6 7 8 9
10

10

10

10

10

10

10
0

p

L
 e

rr
or

Tri
Square, LGL
Square, LG
Skew quad, LGL
Skew quad, LG

0 1 2 3 4 5 6 7 8 9
10

10

10

10

10

10

10
0

p

L
 e

rr
or

Tri
Square, LGL
Square, LG
Skew quad, LGL
Skew quad, LG

0 1 2 3 4 5 6 7 8 9
10

10

10

10

10

10

10
0

p

L
   

er
ro

r

Tri
Square, LGL
Square, LG
Skew quad, LGL
Skew quad, LG

Figure 9. ‖u−uh‖N,∞ at t=0.8 as function of orders of nodal bases p. The approximate
solutions are computed on the meshes of resolution h, h/2, and h/3: (a) h-resolution;

(b) h/2-resolution; and (c) h/3-resolution.

exponential-like rate. Figure 10 plots, on a log–log scale, the errors in the approximate solutions
against the element sizes (in these plots

√
Nt is used as a measure of element size). Figures 10(a)–(c)

show the results from the DG solution on triangles, on squares with the LGL nodal set, and on
squares with the LG nodal set, respectively. Since the errors in the methods with the skewed
rectangles differ just slightly from that with squares, we exclude them from the figure. It can be
seen that, for all order p, the error as a function of element size h�

√
Nt appears as a straight line

in the log–log plot. This indicates that the error in the approximate solution ‖u−uh‖N,∞ behaves
like O(hS), where S, the rate of convergence, is the slope of the straight line. Note that the value
of the slope is higher when the higher order p is used. The rate of convergence for each order
p is typically close to p+1, regardless of the element type being used. In other words, for this
linear problem, the numerical solution from the DG solutions described converges like O(h p+1).
This optimal behavior on the convergence of the numerical solution can be expected according to
theoretical estimates (see [22–24]). Note that for a general nonlinear flux f, the estimated error of
O(h p+1/2) is expected for a DG method with the use of the Lax–Friedrichs flux [24].

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 64:1336–1362
DOI: 10.1002/fld



1352 D. WIRASAET ET AL.

10
(a) (b)

(c)

1
10

2
10

3

10

10

10
0

N
t
1/2

L
 e

rr
or

9

1

2
1

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

10
1

10
2

10
3

10

10

10
0

L
 e

rr
or

N
t
1/2

9

1

2
1

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

10
1

10
2

10
3

10

10

10
0

N
t
1/2

L
 e

rr
or

9

1

2
1

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

Figure 10. ‖u−uh‖N,∞ as a function of h�
√
Nt for different orders of p: (a) triangular elements;

(b) square elements with the LGL nodal set; and (c) square elements with the LG nodal set.

3.2. Computational efficiency

We first make a comparison of the computational cost to evaluate the right-hand side of (8) of
the nodal basis on triangles and the nodal basis on quadrilaterals. Let us first discuss a crude
comparison estimate. For this estimate, it is assumed that the majority of computing operations are
related to the evaluations of the area integrals and the edge integrals. In addition, these integrals are
computed from the matrix–vector multiplications of the pre-computed matrices and given vector
(note that the implementation of our code follows this line of concept) and the cost of matrix–
vector multiplication of the M×N matrix with an N×1 vector is of O(MN ). Furthermore, the
calculation is carried out in an element-wise fashion. We consider a scenario in which the number
of elements in a triangular mesh is twice that of a quadrilateral mesh. Let us first outline an
estimated cost for triangular elements. In this case, the cost of the area integrals for one element
for a given p is proportional to

∼Np×Np = (p+1)2(p+2)2

4
. (32)
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Figure 11. The ratio of cq to ct as a function of order p when the problem is solved on the meshes
of resolution h. cq and ct denotes the computing time used to evaluate one right-hand side term of
the discretization with quadrilateral elements and with triangle elements, respectively: (a) with compiler

optimization and (b) without compiler optimization.

Provided that an edge integral is done via a p+1 quadrature rule, the operations required on a
single edge is proportional to Np×(p+1) and thus for one element, the cost of the edge integrals
is proportional to

∼3×Np×(p+1)= 3(p+1)2(p+2)

2
. (33)

By assuming that the values of constants associated with (32) and with (33) are roughly the same,
the cost of evaluating the right-hand side for a triangular mesh consisting of Nel elements, denoted
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Table I. Computing time (in s) used in the evaluation of the right-hand side of
DG discretizations on the meshes of resolution h.

Optimized code∗ Non-optimized code

p Tri.† Sq., LGL‡ Sq., LG§ Tri. Sq., LGL Sq., LG

1 0.0108 0.0074 0.0088 0.0179 0.0137 0.0125
2 0.0150 0.0104 0.0104 0.0263 0.0225 0.0214
3 0.0162 0.0128 0.0127 0.0386 0.0367 0.0366
4 0.0208 0.0171 0.0171 0.0564 0.0589 0.0604
5 0.0255 0.0239 0.0225 0.0761 0.1021 0.0868
6 0.0333 0.0333 0.0324 0.0999 0.1410 0.1259
7 0.0449 0.0523 0.0420 0.1467 0.2094 0.1945
8 0.0542 0.0681 0.0606 0.1920 0.3053 0.2768
9 0.0745 0.0871 0.0815 0.2577 0.4694 0.3770
10 0.0846 0.1273 0.1163 0.3210 0.6035 0.5137

∗A compiler optimization turned on.
†Triangular elements.
‡Square elements with the LGL points.
§Square elements with the LG points.

as ct , is roughly proportional to

ct ∼Nel
(p+1)2(p+2)

2

(
p+2

2
+3

)
. (34)

By following the same argument as above, the cost of evaluating the right-hand side of a quadri-
lateral mesh with Nel/2 elements, denoted as cq , is proportional to

cq ∼ Nel

2
(p+1)3(p+5). (35)

By comparing (34) and (35), it is found from this estimate that cq>ct for p>1 (that is the use of
rectangular elements is more costly than the use of triangular elements when the order p is greater
than one). It must be emphasized that this estimate is crude and the actual algorithm is in fact
more complicated than the setting used in the estimate. The ratio of cq and ct from the numerical
experiments (along with our estimate) on the meshes of resolution h with various p is plotted in
Figure 11. Here, the values of cq and ct from the experiments correspond to a ratio of the total
time spent on a routine calculating the right-hand side term divided by the total number of times
that this routine being called. Note that cq reported are the results from the calculations using the
mesh with square elements. Figure 11(a) shows the results with the compiler optimization turned
on and Figure 11(b) shows the results with the compiler optimization turned off. The numeric
values of the computing time used in the evaluation of one right-hand side vector are reported in
Table I. Although not shown here, the results on the meshes of higher resolution show a similar
trend. From Figure 11(b), it can be observed that the cost for the quadrilateral elements is greater
than that for the triangular elements when p�6. With the compiler optimization being omitted, the
point at which the quadrilateral elements are more costly starts at p>3. Regardless of the compiler
optimization being on or off, the numerical results show that the order p, at which the calculation
of the right-hand side associated with the quadrilateral elements is more expensive than that of the
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Figure 12. ‖u−uh‖N,∞ at t=0.8 versus computing time (in s) used for meshes of three different
resolution: (a) triangular elements; (b) square elements with the LGL nodal set; and (c) square elements
with the LG nodal set. +, p=1; •, p=2; �, p=3; , p=4; ×, p=5; �, p=6; �, p=7; and ∗, p=8.

triangular elements, is higher than that predicted by the estimate discussed above. Note that we
speculate that the disparity of cq/ct between the estimate and the numerical results stems partly
from the efficiency of memory traffic and cache management.

Next we consider the relationship between the accuracy of the approximate solution using
different element types and the total computing times used. The computing times reported in
what follows are the results from the computer code compiled with the optimization turned on.
Figure 12 shows the maximum absolute error in the solution at t=0.8 versus the computing time
required to integrate the problem in time. Figure 12(a) reports the results where the triangular
meshes are used. The numerical results obtained on the square meshes with the LGL nodal set
are plotted in Figure 12(b) and with the LG nodal set in Figure 12(c). Note that each curve is
the result of using different levels of resolution. The symbols on each line denote the error for
different orders of basis p employed. It can be observed that, as the order p increases, as expected,
the computing time required is longer in order to achieve spectral accuracy. The longer run times
are a consequence of the use of smaller �t in the RKF45 (note here we let the RKF45 select
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Figure 13. ‖u−uh‖N,∞ at t=0.8 versus computing time (in s) used in the methods of different element
types of fixed p: (a) p=1; (b) p=2; (c) p=3; and (d) p=4.

the size of �t automatically). In addition to obtaining a solution of a certain specified accuracy,
the computing time required is shorter for a coarser mesh with a higher order p. In other words,
it is more efficient to use a coarser mesh with a higher order p. To see more clearly how the
methods compare on the meshes of different resolutions, we plot the error on the mesh of different
resolutions when the order p is held fixed against the computing times in Figure 13 for p=1–4
and in Figure 14 for p=5–8. Note that each line corresponds to a result of a different element
type. The symbols on each line represent the three different resolutions. It can be observed that,
for the quadrilateral elements, to obtain a certain accuracy, the use of the LG nodal set takes less
computing time than that of the LGL nodal set for most cases. In addition, regarding the computing
cost to achieve a similar accuracy, the DG solutions on the quadrilateral elements (both square
and skewed-rectangular elements) are more efficient than that on the triangular elements. To gain
a better idea quantitatively of how these methods compare, we fit, in a least square sense, the data
(in log–log scale) with a linear function and then calculate from the fitting result a computing time
for a required accuracy, denoted as 
. Table II tabulates the computing times corresponding to the
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Figure 14. ‖u−uh‖N,∞ at t=0.8 versus computing time (in s) used in the methods of different element
types of fixed p: (a) p=5; (b) p=6; (c) p=7; and (d) p=8.

given values of 
 for different types of elements and the different values of p. Note that the values
of 
 are selected such that they are well in the range of data considered. In this table, a numeric
value inside a parenthesis denotes the ratio of the time of the considered method to that of the
triangular elements with the same value of order p. From this table, it can be seen that the nodal
DG methods using the quadrilateral elements are approximately 1.4 to 5.4 times more efficient than
those using the triangular elements for a required accuracy. The quadrilateral elements employing
the LG nodal set are typically two times more efficient than those using the LGL nodal set.

Next we consider DG solutions of the problem on two meshes shown in Figure 15. Figure 15(a)
shows the unstructured-triangular mesh and Figure 15(b) the mixed mesh built by naively merging
adjacent triangles in the original triangular mesh into quadrilaterals. The triangular mesh consists
of 5344 elements and the mixed mesh consists of 738 triangles and 2308 skewed rectangles. The
merging process is carried out in a way that a resulting quadrilateral element has a determinate
Jacobian. In other words, we do not merge two triangles forming a quadrilateral with reflex interior
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Table II. Computing times corresponding to a given value of error 
 of different types of elements.

Order of basis p

1 2 3 4 5 6 7 8

Method

=

2.0E−1

=

1.0E−2

=

1.0E−3

=

2.0E−4

=

2.0E−5

=

5.0E−6

=

1.0E−6

=

1.0E−7

Tri. elements∗ 58.01 153.37 415.19 433.69 657.62 635.83 699.61 1121.40
Sq. elements,
LGL†

38.54
(1.5)

87.74
(1.7)

185.56
(2.2)

186.05
(2.3)

283.57
(2.3)

270. 74
(2.3)

373.36
(1.8)

638.15
(1.8)

Sq. elements,
LG‡

40.18
(1.4)

59.98
(2.6)

86.39
(4.8)

91.80
(4.7)

122.76
(5.4)

142.52
(4.5)

196.93
(3.6)

367.58
(3.1)

Skewed
elements, LGL§

41.33
(1.4)

91.58
(1.7)

177.90
(2.3)

214.43
(2.0)

294.89
(2.2)

336.31
(1.9)

414.67
(1.7)

742.28
(1.5)

Skewed
elements, LG¶

35.21
(1.6)

56.97
(2.7)

85.02
(4.9)

83.85
(5.2)

155.12
(4.2)

169.49
(3.8)

227.57
(3.1)

393.41
(2.9)

∗Triangular elements.
†Square elements with the LGL nodal set.
‡Square elements with the LG nodal set.
§Skewed-rectangular elements with the LGL nodal set.
¶Skewed-rectangular elements with the LG nodal set.

angles (�180◦). Note that the majority of the triangles in the original mesh have interior angles
of approximately 60◦ and consequently quadrilateral elements in the mixed mesh are mostly
diamond shaped with interior angles of approximately 60◦ and 120◦. The problem is solved with
the parameters in RKF45 set to εr =10−5 and εa =10−10. Table III reports the resulting computing
time required to integrate the problem to time t=0.8 for various orders of p. Errors in the
solutions, ‖u−uh‖N,∞, are tabulated in Table IV. Figure 16 plots the error in the solution versus
the computing time. It can be observed from Table III that, for the orders of the basis p up to 5, the
computing times required in the integration for the mixed mesh are shorter than for the triangular
mesh (a ratio of run times is closer to unity as p increases) and roughly the same at p=6. For
p�7, the use of the mixed mesh requires longer computing time than that of the triangular mesh.
This behavior is consistent with the behavior observed in the previous tests (when meshes used
are all quadrilaterals). From Figure 16, it can be observed that, DG solutions with the mixed mesh
have slightly higher efficiency in term of computing cost to achieve a similar accuracy (at the
nodal points). For the mixed mesh case, the use of quadrilateral elements with the LG nodal set
yields similar computational efficiency as with the LGL nodal set.

The numerical results discussed above provide clear evidence that there is a benefit in using
quadrilateral elements, especially, with the LG nodal set. For low-order p, the methods using the
quadrilateral elements would be faster or as fast as the methods using the triangular elements
(given that the quadrilateral mesh consists roughly of half as many elements as the triangular
mesh) to reach the final time of a simulation. It is noted here that in computing the action of the
stiffness matrices (23) and (26) on a given vector, the derivative matrix D�

i, j and D�
i, j are kept

in a full format. For quadrilateral elements, the number of nonzero entries in each row of such
matrices is (p+1) instead of (p+1)2 owing to the tensor product nature of the basis functions.
Therefore, the calculation of this action of these matrices on the vector can be speeded up by
using a sparse matrix–vector multiplication algorithm since this scales like O((p+1)3) instead of
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(a)

(b)

Figure 15. Two computational meshes: (a) triangular mesh (5344 elements) and (b) mixed mesh
(738 triangles, 2308 skewed rectangles), obtained by merging adjacent triangles into quadrilaterals.

O((p+1)4). Although not tested here, we believe that, by exploiting the sparseness of D�
i, j and

D�
i, j , the computing time required in the calculations using the quadrilateral elements would be

lower in comparison to those reported here. Quadrilateral elements also benefit from the fact that
the nodal basis on a quadrilateral can represent more cross terms of polynomials than the nodal
basis on a triangle, thus it can be expected in general that the approximate solutions from the
quadrilateral elements would have better accuracy or, at worst, approximately the same accuracy
as those from the triangular elements (which unfortunately we do not know a priori for a general
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Table III. Computing time (in s) for triangular and mixed meshes required to reach t=0.8.

Mixed mesh

Triangular mesh
(728 Tri, 2308 Quad.)

Order p (Nel=5344) Tri+LGL elem.∗ Tri+LG elem.†

1 1.07e+02 6.87e+01 6.77e+01
2 1.68e+02 1.26e+02 1.32e+02
3 3.18e+02 2.64e+02 2.77e+02
4 6.41e+02 5.49e+02 5.66e+02
5 9.76e+02 9.27e+02 9.30e+02
6 1.80e+03 1.66e+03 1.78e+03
7 2.71e+03 2.86e+03 2.75e+03
8 4.22e+03 5.34e+03 5.02e+03

∗Triangular elements and quadrilateral LGL elements.
†Triangular elements and quadrilateral LG elements.

Table IV. Error in solution, ‖u−uh‖N,∞, at t=0.8.

Mixed mesh
Triangular mesh (728 Tri, 2308 Quad.)

Order p (Nel=5344) Tri+LGL elem.∗ Tri+LG elem.†

1 1.10e−01 1.54e−01 1.74e−01
2 1.58e−02 1.33e−02 1.33e−02
3 1.74e−03 1.67e−03 1.12e−03
4 1.65e−04 1.04e−04 1.03e−04
5 1.60e−05 9.06e−06 7.46e−06
6 1.15e−06 6.19e−07 6.18e−07
7 7.54e−08 4.24e−08 2.90e−08
8 5.38e−09 2.75e−09 2.79e−09

∗Triangular elements and quadrilateral LGL elements.
†Triangular elements and quadrilateral LG elements.

problem). This expectation makes the use of the quadrilateral elements particularly appealing for
the low to moderate order p since this implies that the methods with the quadrilateral elements
would likely be more efficient to obtain a required level of accuracy. If the former scenario is the
case, the use of quadrilateral elements with higher order p is still appealing due to their higher
accuracy per cost as shown here.

4. CONCLUSIONS

In this work, we have conducted a study of DG solutions on triangles and quadrilaterals. The
main motivation is to gain more insight into whether the quadrilateral element would improve the
efficiency of the DG methods in a setting in which one quadrilateral element may be formed by
combining two (adjacent) triangles. For a quadrilateral element, we consider two tensor product
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Figure 16. ‖u−uh‖N,∞ at t=0.8 versus computing time (in s) used in the triangular mesh and in the
mixed mesh. +, p=1; •, p=2; �, p=3; , p=4; ×, p=5; �, p=6; �, p=7; ∗, p=8.

nodal bases: one is associated with the LGL nodal points and the other is associated with the LG
nodal points. An efficient means to evaluate the elemental matrices in these bases was described.
To assess the performance of these methods we consider the nodal bases of various order p and
different configurations with various mesh resolutions. The linear transport problem is used as a
test problem. Here, the integration in time is carried out using RKF45, which has a mechanism to
automatically adjust the time step sizes used in the integration. The numerical solutions show that
all the methods considered exhibit spectral convergence when the resolution of the computational
meshes is held fixed and the order of basis p is varied. The maximum absolute error at the
nodes in the approximate solutions behaves like O(h p+1) when p is held fixed and the mesh
size is changed. From an efficiency standpoint, it is more efficient to use a coarser mesh with
high-order p. The results from numerical experiments demonstrate that, for the cases where the
order of the basis is low to moderate (up to p=5–6), the quadrilateral elements require less
computing time than the triangular elements in order to reach the given final time (although the
crude estimate on the cost of evaluating the right hand side predicts that this may not be the case
for p�1). For the tests conducted, the quadrilateral elements yield between 1.4 to 5.4 times higher
computational efficiency in term of cost to achieve a similar accuracy (at the nodes). The use of
quadrilateral elements with the LG nodal set yields the best computational efficiency among the
methods tested. The numerical results provide evidence that there may be a substantial benefit in
using the quadrilateral elements, in particular, when using low to moderate order p.
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