
CE 30125 - Lecture 10

p. 10.1

LECTURE 10

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY
DIFFERENTIAL EQUATIONS

Ordinary Differential Equations

Initial Value Problems

• For Initial Value problems (IVP’s), conditions are specified at only one value of the
independent variable  initial conditions (i.c.’s) 

• For example a simple harmonic oscillator is described by

         

•   = location  dependent variable

•   = time  independent variable
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Boundary Value Problems

• For Boundary Value Problems (BVP’s) conditions are specified at two values of the
independent variable (which represent the actual physical boundaries)

• Example

             

General Initial Value Problems

• Any IVP can be represented as a set of one or more 1st order d.e.’s each with an i.c.

• Example

                

• Let  and we can develop a system of 2 first order O.D.E.’s which are coupled
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• Therefore the general IVP can be written as:

      

...

      

• Possible solution strategies for higher order o.d.e.’s

• Solutions of 1st order d.e.’s

• single equation with associated i.c.

• extension to coupled sets

• Solution of higher order equations without reduction to a 1st order system must
develop a method for a specific equation

•  not as general

•  may be advantageous in certain cases

dy1

dt
-------- f1 y1 y2  yn t    = y1 0  y10=

dyn

dt
-------- fn y1 y2  yn t    = yn 0  yn0=
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Solution to a 1st Order Single Equation IVP

   with specified i.c.   

Euler Method

• The Euler method is a 1st order method

• We evaluate the o.d.e. at node  and use a forward difference approximation for 
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• Simply “march” forward in time 

•  From time level  (time = ) 

•  To time level  (time =  = )

• We note that  equals the slope at . 

• Therefore to obtain  simply add   to  

j tj

j 1+ tj 1+ tj t+

}
yj+1

yj

tj tj+1

t f (tj, yj)

f tj yj  tj

yj 1+ t f tj yj  yj
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Example

• Solve     with the i.c.  

• Apply the Euler approximation to solve this IVP equation. Apply a time step equal to
. Solve up to  

dy
dt
------ y y–= y 0  1=

t 0.5= t 3= 0 t 3  

y

t=0 0.5 1.0 1.5 2.0 2.5 3.0
t

0 1 2 3 4 5 6 i

i.c. information available
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• Discretize the o.d.e. at a general node 

• Approximate  using a forward difference approximation



Next Value = Previous Value + Run Slope

• Equation relates a known time level  to the new time level . This process is known
as “time stepping” or “time marching”
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--------------------- yi yi–=
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• The i.c. indicates that 

• Take 1st time step     

• Note that   where  in this case

   at    

• Take next time step   

    at    

yo 1=

i 0    i 1+ 1= =

ti i t to+ it= = to 0=

y1 yo tyo yo–=

y1 1 0.5 1 1–=

y1 0.5= t1 0.5=

i 1    i 1+ 2= =

y2 y1 t y1 y1–=

y2 0.5 0.5 0.5 0.5–=

y2 0.375= t2 1.0=
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• Take next time step   

   at   

• Take next time step   

   at   

i 2    i 1+ 3= =

y3 y2 t y2 y2–=

y3 0.375 0.5 0.375  0.375–=

y3 0.30469= t3 1.5=

i 3    i 1+ 4= =

y4 y3 t y3 y3–=

y4 0.30469 0.5 0.30469  0.30469–=

y4 0.25827= t4 2.0=
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• Take next time step

   at   

• Take next time step

   at   

• We can continue time marching

t 
Numerical Solution using  

 and the Euler 
Method

Numerical Solution using  
 and the Euler 

Method

Exact 
Solution

0.0     1.0000 (i.c.)      1.0000 (i.c.) 1.0000

1.0 0.37500 0.4982 0.5000

2.0 0.25827 0.3321 0.3333

3.0 0.19963 0.2491 0.2580

y5 0.22492= t5 2.5=

y6 0.19963= t6 3.0=

t 0.5= t 0.1=
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General Observations for Solving IVP’s

• Solution to o.d.e.’s can be very simple using finite difference approximations to repre-
sent differentiation

• Accuracy is dependent on the time step !  We need to understand the error behavior

• As , the solution gets better

• IVP’s are solved using a time marching process  Begin at one end and march forward
up to the desired point or indefinitely

• At each time step, we introduce a new unknown, , which is solved for by writing
and solving the discrete form of the IVP at node j.

Solutions to Boundary Value Problems

• Boundary value problems must be 2nd order o.d.e.’s or higher

• We apply FD approximations to the various terms in the differential equation to obtain
discrete approximations to the differential equations at points in space.

• Unknown functional values at the nodes will be coupled and require the solution of a
system of simultaneous equations  matrix methods.

t

t 0

yj 1+



CE 30125 - Lecture 10

p. 10.12

Example

• Consider a steady state 1-D problem    

   with b.c.’s specified as     and   

• Consider the following discretization of the domain

• At each node, we introduce an unknown  (total of n+2 unknowns)

• The O.D.E. is approximated at generic node  as

• We have used a central difference approximation of 

d
2
y

dx
2

-------- Ay+ B=

y 0  0= y L  0=

x=0

j=0 1 2 3 j-1 j j+1 n-2 n-1 n j=n+1

x=Lx

yj

j

yj 1+ 2yj– yj 1–+

x 2
----------------------------------------- Ayj+ B=

O x 2
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• Therefore we generate  equations (1 for each interior point and 1 for each boundary
node) to solve for the  unknowns:

...

...

n 2+
n 2+

y0 0=

y2 2y1– y0 A x 2y1+ + B x 2=

y3 2y2– y1 A x 2y2+ + B x 2=

yj 1+ 2yj– yj 1– A x 2yj+ + B x 2
=

yn 2yn 1– yn 2–+– A x 2
yn 1–+ B x 2=

yn 1+ 2yn– yn 1– A x 2
yn+ + B x 2=

yn 1+ 0=
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• Collect coefficients of unknowns and write in matrix form:

where
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• Notes on solutions

• Tri-diagonal systems are very inexpensive to solve when a specialized compact
storage tri-diagonal solver is used

• We can reduce the system of simultaneous equations from  to 
by incorporating the b.c.’s into the discrete form of the differential equation at
nodes 1 and 

• If the o.d.e. is nonlinear  the method no longer generates linear set of simultaneous
algebraic equations but a nonlinear set!

Example

• Solve the following nonlinear o.d.e.

• Using a central difference approximation yields nonlinear algebraic equations

n 2+  n 2+  n n

n

d
2
y

dx
2

-------- Dy
2

+ E=

yj 1+ 2yj– yj 1–+

x 2
------------------------------------------ Dyj

2+ E=
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• Solution strategies include:

• Iterative solution of algebraic equations puts the nonlinear term on the r.h.s. and iter-
ates until convergence. There may be convergence problems.

• Linearization of the nonlinear terms. Use Taylor series to approximate the nonlinear
terms.


