LECTURE 10

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

Ordinary Differential Equations

Initial Value Problems

- For Initial Value problems (IVP's), conditions are specified at only one value of the independent variable → initial conditions (i.c.'s)
- For example a simple harmonic oscillator is described by

$$A\frac{d^2y}{dt^2} + B\frac{dy}{dt} + Cy = g(t)$$
 $y(0) = y_o$ $\frac{dy}{dt}(0) = V_o$

- $y = \text{location} \rightarrow \text{dependent variable}$
- $t = time \rightarrow independent variable$

Boundary Value Problems

- For Boundary Value Problems (BVP's) conditions are specified at two values of the independent variable (which represent the actual physical boundaries)
- Example

$$\frac{d^2y}{dx^2} + D\frac{dy}{dx} + Ey = h(x) \qquad y(0) = y_o \qquad y(L) = y_l$$

General Initial Value Problems

- Any IVP can be represented as a set of one or more 1st order d.e.'s each with an i.c.
- Example

$$A\frac{d^2y}{dt^2} + B\frac{dy}{dt} + C = g(t) \qquad y(0) = y_o \qquad \frac{dy}{dt}(0) = v_o$$

• Let $z = \frac{dy}{dt}$ and we can develop a system of 2 first order O.D.E.'s which are coupled

$$\frac{dy}{dt} = z \qquad y(0) = y_o$$
$$\frac{dz}{dt} = -\frac{B}{A}z - \frac{C}{A} + \frac{g(t)}{A} \qquad z(0) = v_o$$

• Therefore the general IVP can be written as:

$$\frac{dy_1}{dt} = f_1(y_1, y_2, ..., y_n, t) \qquad y_1(0) = y_{10}$$

$$\vdots$$

$$\frac{dy_n}{dt} = f_n(y_1, y_2, ..., y_n, t) \qquad y_n(0) = y_{n0}$$

- Possible solution strategies for higher order o.d.e.'s
 - Solutions of 1st order d.e.'s
 - single equation with associated i.c.
 - extension to coupled sets
 - Solution of higher order equations without reduction to a 1st order system → must develop a method for a specific equation
 - not as general
 - may be advantageous in certain cases

Solution to a 1st Order Single Equation IVP

$$\frac{dy}{dt} = f(y, t)$$
 with specified i.e. $y(t_o) = y_o$

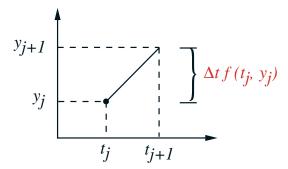
Euler Method

- The Euler method is a 1st order method
- We evaluate the o.d.e. at node *j* and use a forward difference approximation for $\frac{dy}{dt}\Big|_{i}$

$$\frac{y_{j+1} - y_j}{\Delta t} = f(y_j, t_j) \qquad \Rightarrow \qquad \qquad$$

$$y_{j+1} = y_j + \Delta t f(y_j, t_j)$$

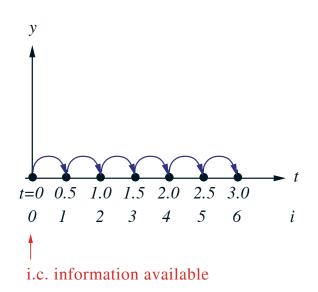
- Simply "march" forward in time
 - From time level j (time = t_j)
 - To time level j + 1 (time = $t_{j+1} = t_j + \Delta t$)



- We note that $f(t_j, y_j)$ equals the slope at t_j .
- Therefore to obtain y_{j+1} simply add $\Delta t f(t_j, y_j)$ to y_j

<u>Example</u>

- Solve $\frac{dy}{dt} = -y|y|$ with the i.c. y(0) = 1
- Apply the Euler approximation to solve this IVP equation. Apply a time step equal to $\Delta t = 0.5$. Solve up to t = 3 ($0 \le t \le 3$)



• Discretize the o.d.e. at a general node *i*

$$\left. \frac{dy}{dt} \right|_i = -y_i |y_i|$$

• Approximate $\frac{dy}{dt}\Big|_i$ using a forward difference approximation

$$\frac{y_{i+1} - y_i}{\Delta t} = -y_i |y_i|$$
$$\Rightarrow$$
$$y_{i+1} = y_i - \Delta t |y_i|$$

Next Value = Previous Value + Run × *Slope*

• Equation relates a known time level *i* to the new time level *i* + 1. *This process is known* as "time stepping" or "time marching"

- The i.c. indicates that $y_o = 1$
- Take 1st time step \Rightarrow $i = 0 \rightarrow i + 1 = 1$
 - Note that $t_i = i \cdot \Delta t + t_o = i\Delta t$ where $t_o = 0$ in this case

$$y_1 = y_o - \Delta t y_o |y_o|$$
$$y_1 = 1 - 0.5 \times 1 \times |1|$$

$$y_1 = 0.5$$
 at $t_1 = 0.5$

• Take next time step $i = 1 \rightarrow i+1 = 2$

$$y_2 = y_1 - \Delta t |y_1|$$

 $y_2 = 0.5 - 0.5 \times 0.5 \times |0.5|$

 $y_2 = 0.375$ at $t_2 = 1.0$

• Take next time step $i = 2 \rightarrow i + 1 = 3$

$$y_3 = y_2 - \Delta t \ y_2 | y_2 |$$

 $y_3 = 0.375 - 0.5 \times (0.375) \times |0.375|$

$$y_3 = 0.30469$$
 at $t_3 = 1.5$

• Take next time step $i = 3 \rightarrow i + 1 = 4$

$$y_4 = y_3 - \Delta t |y_3|$$

 $y_4 = 0.30469 - 0.5 \times (0.30469) \times |0.30469|$

$$y_4 = 0.25827$$
 at $t_4 = 2.0$

• Take next time step

$$y_5 = 0.22492$$
 at $t_5 = 2.5$

• Take next time step

$$y_6 = 0.19963$$
 at $t_6 = 3.0$

• We can continue time marching

t	Numerical Solution using $\Delta t = 0.5$ and the Euler Method	Numerical Solution using $\Delta t = 0.1$ and the Euler Method	Exact Solution
0.0	1.0000 (i.c.)	1.0000 (i.c.)	1.0000
1.0	0.37500	0.4982	0.5000
2.0	0.25827	0.3321	0.3333
3.0	0.19963	0.2491	0.2580

General Observations for Solving IVP's

- Solution to o.d.e.'s can be very simple using finite difference approximations to represent differentiation
- Accuracy is dependent on the time step Δt ! We need to understand the error behavior
- As $\Delta t \rightarrow 0$, the solution gets better
- IVP's are solved using a time marching process → Begin at one end and march forward up to the desired point or indefinitely
- At each time step, we introduce a new unknown, y_{j+1} , which is solved for by writing and solving the discrete form of the IVP at node *j*.

Solutions to Boundary Value Problems

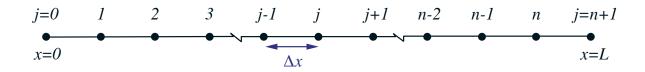
- Boundary value problems must be 2nd order o.d.e.'s or higher
- We apply FD approximations to the various terms in the differential equation to obtain discrete approximations to the differential equations at points in space.
- Unknown functional values at the nodes will be coupled and require the solution of a system of simultaneous equations \rightarrow matrix methods.

Example

• Consider a steady state 1-D problem $\frac{d^2y}{dx^2} + Ay = B$

with b.c.'s specified as y(0) = 0 and y(L) = 0

• Consider the following discretization of the domain



- At each node, we introduce an unknown y_i (total of n+2 unknowns)
- The O.D.E. is approximated at generic node *j* as

$$\frac{y_{j+1} - 2y_j + y_{j-1}}{(\Delta x)^2} + Ay_j = B$$

• We have used a central difference approximation of $O(\Delta x)^2$

• Therefore we generate *n* + 2 equations (1 for each interior point and 1 for each boundary node) to solve for the *n* + 2 unknowns:

$$y_{0} = 0$$

$$y_{2} - 2y_{1} + y_{0} + A(\Delta x)^{2}y_{1} = B(\Delta x)^{2}$$

$$y_{3} - 2y_{2} + y_{1} + A(\Delta x)^{2}y_{2} = B(\Delta x)^{2}$$

$$\vdots$$

$$y_{j+1} - 2y_{j} + y_{j-1} + A(\Delta x)^{2}y_{j} = B(\Delta x)^{2}$$

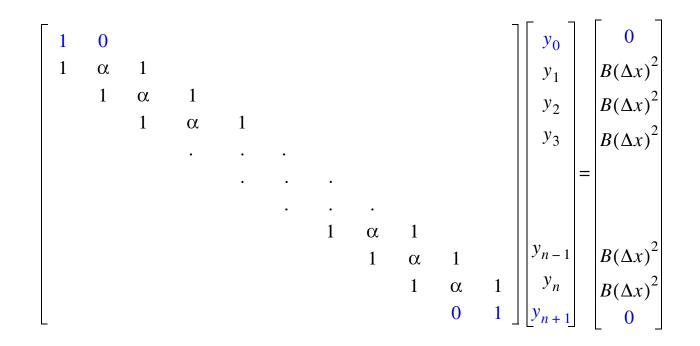
$$\vdots$$

$$y_{n} - 2y_{n-1} + y_{n-2} + A(\Delta x)^{2}y_{n-1} = B(\Delta x)^{2}$$

$$y_{n+1} - 2y_{n} + y_{n-1} + A(\Delta x)^{2}y_{n} = B(\Delta x)^{2}$$

$$y_{n+1} = 0$$

• Collect coefficients of unknowns and write in matrix form:



where

$$\alpha = -2 + A(\Delta x)^2$$

- Notes on solutions
 - Tri-diagonal systems are very inexpensive to solve when a specialized compact storage tri-diagonal solver is used
 - We can reduce the system of simultaneous equations from $(n+2) \times (n+2)$ to $n \times n$ by incorporating the b.c.'s into the discrete form of the differential equation at nodes 1 and n
 - If the o.d.e. is nonlinear → the method no longer generates linear set of simultaneous algebraic equations but a *nonlinear* set!

<u>Example</u>

• Solve the following nonlinear o.d.e.

$$\frac{d^2y}{dx^2} + Dy^2 = E$$

• Using a central difference approximation yields nonlinear algebraic equations

$$\frac{y_{j+1} - 2y_j + y_{j-1}}{(\Delta x)^2} + Dy_j^2 = E$$

- Solution strategies include:
 - Iterative solution of algebraic equations puts the nonlinear term on the r.h.s. and iterates until convergence. There may be convergence problems.
 - Linearization of the nonlinear terms. Use Taylor series to approximate the nonlinear terms.