LECTURE 14

NUMERICAL INTEGRATION

- Find

$$
I=\int_{a}^{b} f(x) d x
$$

or

$$
I=\int_{a}^{b}\left[\int_{u(x)}^{v(x)} f(x, y) d y\right] d x
$$

- Often integration is required. However the form of $f(x)$ may be such that analytical integration would be very difficult or impossible. Use numerical integration techniques.
- Finite element (FE) methods are based on integrating errors over a domain. Typically we use numerical integrators.
- Numerical integration methods are developed by integrating interpolating polynomials.

Trapezoidal Rule

- Trapezoidal rule uses a first degree Lagrange approximating polynomial ($N=1$, $N+1=2$ nodes, linear interpolation).

- Define the linear interpolating function

$$
g(x)=f_{o}\left(\frac{x_{1}-x}{x_{1}-x_{o}}\right)+f_{1}\left(\frac{x-x_{o}}{x_{1}-x_{o}}\right)
$$

- Establish the integration rule by computing $I=\int_{x_{0}}^{x_{1}} f(x) d x=\int^{x_{1}}(g(x)+e(x)) d x$

$$
\left.\left.\left.\begin{array}{rl}
I & =\int_{x_{o}}^{x_{1}} g(x) d x+E \Rightarrow \\
I & =\int_{x_{o}}^{x_{1}}\left[f_{o}\left(\frac{x_{1}-x}{x_{1}-x_{o}}\right)+f_{1}\left(\frac{x-x_{o}}{x_{1}-x_{o}}\right)\right] d x+E \Rightarrow \\
I & =\left[f_{o}\left(\frac{x_{1} x-\frac{x^{2}}{2}}{x_{1}-x_{o}}\right)+f_{1}\left(\frac{\frac{x^{2}}{2}-x_{o} x}{x_{1}-x_{o}}\right)\right]_{x_{o}}^{x_{1}}+E \Rightarrow \\
I & =\left[f_{o}\left(\frac{x_{1}^{2}-\frac{x_{1}^{2}}{2}}{x_{1}-x_{o}}\right)+f_{1}\left(\frac{x_{1}^{2}}{2}-x_{o} x_{1}\right.\right. \\
x_{1}-x_{o}
\end{array}\right)-f_{o}\left(\frac{x_{1} x_{o}-\frac{x_{o}^{2}}{2}}{x_{1}-x_{o}}\right)-f_{1}\left(\frac{x_{o}^{2}}{\frac{2}{x_{1}-x_{o}^{2}}}\right)+E\right] \quad\right]
$$

- Trapezoidal Rule

$$
I=\left(\frac{x_{1}-x_{o}}{2}\right)\left[f_{o}+f_{1}\right]+E
$$

- Trapezoidal Rule integrates the area of the trapezoid between the two data or interpolation points.
- Evaluating the error for trapezoidal rule.
- The error E is dependent on the integral of the difference $e(x)=f(x)-g(x)$. However integrating the ξ dependent error approximation for the interpolating function does not work out in general since ξ is a function of x !
- We must express $e(x)$ in terms of a series of terms expanded about x_{o} in order to

$$
\text { evaluate } E=\int_{x_{o}}^{x_{1}} e(x) d x \text { correctly }
$$

- An alternative strategy is to evaluate

$$
E=\int_{x_{0}}^{x_{1}} f(x) d x-\left(\frac{x_{1}-x_{o}}{2}\right)\left(f_{o}+f_{1}\right)
$$

by developing Taylor series expansions for $f(x), f_{o}$ and f_{1}.

- We do note that as $x_{1}-x_{o}=h \downarrow 0 \Rightarrow E \downarrow 0$

Evaluation of the Error for Trapezoidal Rule

Evaluation of the error by integrating e(x)

- We note that

$$
E \equiv I-\int_{x_{o}}^{x_{N}} g(x) d x \quad \Rightarrow \quad E \equiv \int_{x_{o}}^{x_{N}} f(x) d x-\int_{x_{o}}^{x_{N}} g(x) d x
$$

- However

$$
e(x) \equiv f(x)-g(x) \Rightarrow \int_{x_{o}}^{x_{N}} e(x) d x=\int_{x_{o}}^{x_{N}} f(x) d x-\int_{x_{o}}^{x_{N}} g(x) d x
$$

- Thus

$$
E=\int_{x_{o}}^{x_{N}} e(x) d x
$$

- Recall that $e(x)$ for Lagrange interpolation was expressed as:

$$
e(x)=\frac{\left(x-x_{o}\right)\left(x-x_{1}\right) \ldots\left(x-x_{N}\right)}{(N+1)!} f^{(N+1)}(\xi)
$$

- Notes
- Procedure applies to higher order integration rules as well.
- In general ξ is a function of x
- Neglecting the dependence of $\xi(x)$, can lead to incorrect results. e.g. for Simpson's $\frac{1}{3}$ rule you will integrate out the ξ dependent term and the result would be $E=0$!
- A way you can apply $E=\int^{x_{1}} e(x) d x$ is to take $e(x)$ as a series of terms! Then we will x always get the correct answer!

Evaluation of the error for Trapezoidal Rule by Taylor Series expansion

$$
\begin{aligned}
& E=I-\left(\frac{x_{1}-x_{o}}{2}\right)\left[f_{o}+f_{1}\right] \quad \Rightarrow \\
& E=\int_{x_{o}}^{x_{1}} f(x) d x-\left(\frac{x_{1}-x_{o}}{2}\right)\left(f_{o}+f_{1}\right)
\end{aligned}
$$

- Let's now develop Taylor series expansions for $f(x), f_{o}$ and f_{1} about $\bar{x}=\frac{x_{o}+x_{1}}{2}$

- In general Taylor series expansion about \bar{x} :

$$
f(x)=f(\bar{x})+(x-\bar{x}) f^{(1)}(\bar{x})+\frac{(x-\bar{x})^{2}}{2!} f^{(2)}(\bar{x})+O(x-\bar{x})^{3}
$$

- Now evaluate $f_{o}=f\left(x_{o}\right)$ using the Taylor series

$$
f_{o}=f(\bar{x})+\left(x_{o}-\bar{x}\right) f^{(1)}(\bar{x})+\frac{\left(x_{o}-\bar{x}\right)^{2}}{2} f^{(2)}(\bar{x})+O\left(x_{o}-\bar{x}\right)^{3}
$$

- However since $x_{o}-\bar{x}=-\frac{h}{2}$

$$
f_{o}=f(\bar{x})-\frac{h}{2} f^{(1)}(\bar{x})+\frac{h^{2}}{8} f^{(2)}(\bar{x})+O(h)^{3}
$$

- Similarly

$$
f_{1}=f(\bar{x})+\frac{h}{2} f^{(1)}(\bar{x})+\frac{h^{2}}{8} f^{(2)}(\bar{x})+O(h)^{3}
$$

- Let's substitute in for $f(x), f_{o}$ and f_{1} into the expression for E

$$
\begin{aligned}
E= & \int_{x_{o}}^{x_{1}}\left[f(\bar{x})+(x-\bar{x}) f^{(1)}(\bar{x})+\frac{(x-\bar{x})^{2}}{2!} f^{(2)}(\bar{x})+O(x-\bar{x})^{3}\right] d x \\
& -\left(\frac{x_{1}-x_{0}}{2}\right)\left[f(\bar{x})-\frac{h}{2} f^{(1)}(\bar{x})+\frac{h^{2}}{8} f^{(2)}(\bar{x})+O(h)^{3}+f(\bar{x})+\frac{h}{2} f^{(1)}(\bar{x})+\frac{h^{2}}{8} f^{(2)}(\bar{x})+O(h)^{3}\right] \\
& \Rightarrow \\
E= & {\left[f(\bar{x}) x+\frac{(x-\bar{x})^{2}}{2} f^{(1)}(\bar{x})+\frac{(x-\bar{x})^{3}}{6} f^{(2)}(\bar{x})+O(x-\bar{x})^{4}\right]_{x_{o}}^{x_{1}} } \\
& \quad-\frac{\left(x_{1}-x_{o}\right)}{2}\left[2 f(\bar{x})+\frac{h^{2}}{4} f^{(2)}(\bar{x})+O(h)^{3}\right]
\end{aligned}
$$

$$
\begin{gathered}
E=f(\bar{x})\left(x_{1}-x_{o}\right)+\frac{\left(x_{1}-\bar{x}\right)^{2}}{2} f^{(1)}(\bar{x})-\frac{\left(x_{o}-\bar{x}\right)^{2}}{2} f^{(1)}(\bar{x}) \\
+\frac{\left(x_{1}-\bar{x}\right)^{3}}{6} f^{(2)}(\bar{x})-\frac{\left(x_{o}-\bar{x}\right)^{3}}{6} f^{(2)}(\bar{x})+O\left(x_{1}-\bar{x}\right)^{4}+O\left(x_{o}-\bar{x}\right)^{4} \\
-\left(x_{1}-x_{o}\right) f(\bar{x})-\frac{\left(x_{1}-x_{o}\right)}{8} h^{2} f^{(2)}(\bar{x})+\frac{\left(x_{1}-x_{o}\right)}{2} O(h)^{3} \\
\Rightarrow \\
E=\frac{h^{2}}{8} f^{(1)}(\bar{x})-\frac{h^{2}}{8} f^{(1)}(\bar{x})+\frac{h^{3}}{48} f^{(2)}(\bar{x})+\frac{h^{3}}{48} f^{(2)}(\bar{x})+O(h)^{4}-\frac{h^{3}}{8} f^{(2)}(\bar{x})+O(h)^{4} \\
\Rightarrow
\end{gathered}
$$

- Notes
- Higher order terms have been truncated in this error expression.
- This integration will be exact only for $f(x)=$ linear.
- However it is third order accurate in h
- Error evaluation procedure using T.S. applies to higher order methods as well

Extended Trapezoidal Rule

- Apply trapezoidal rule to multiple "sub-intervals"

- Integrate each sub-interval with trapezoidal rule and sum
- Split $[a, b]$ into N equispaced sub-intervals with $h=\frac{b-a}{N}$
- Compute I as:

$$
I=\int_{a}^{b} f(x) d x=\sum_{i=0}^{N-1}\left(\int_{x_{i}}^{x_{i+1}} f(x) d x\right) \Rightarrow
$$

$$
\begin{gathered}
I=\left(\frac{x_{1}-x_{o}}{2}\right)\left(f_{o}+f_{1}\right)+\left(\frac{x_{2}-x_{1}}{2}\right)\left(f_{1}+f_{2}\right)+\ldots+\left(\frac{x_{N}-x_{N-1}}{2}\right)\left(f_{N-1}+f_{N}\right)+E_{[a, b]} \\
\Rightarrow \\
I=\frac{h}{2}\left(f_{0}+2 f_{1}+2 f_{2}+\ldots+2 f_{N-1}+f_{N}\right)+E_{[a, b]}
\end{gathered}
$$

where

$$
\begin{gathered}
f_{o}=f(a) \\
f_{1}=f(a+h) \\
f_{2}=f(a+2 h) \\
\cdot \\
\vdots \\
f_{i}=f(a+i h)
\end{gathered}
$$

- Thus extended trapezoidal rule can be expressed as:

$$
I=\frac{h}{2}\left[f(a)+f(b)+2 \sum_{i=1}^{N-1} f(a+i h)\right] \quad \text { where } \quad N=\frac{b-a}{h}
$$

- Error is simply the sum of the individual errors:

$$
E_{[a, b]}=\sum_{i=1}^{N}-\frac{1}{12} h^{3} f^{(2)}\left(\bar{x}_{i}\right)
$$

where $\bar{x}_{i}=$ the average x within each sub-interval

$$
E_{[a, b]}=-\frac{1}{12}(b-a) h^{2} \cdot \frac{1}{N} \sum_{i=1}^{N} f^{(2)}\left(\bar{x}_{i}\right)
$$

- Defining the average of the second derivatives

$$
\overline{f^{(2)}} \equiv \frac{1}{N} \sum_{i=1}^{N} f^{(2)}\left(\bar{x}_{i}\right)
$$

- Thus

$$
E_{[a, b]}=-\frac{1}{12}(b-a) h^{2} \overline{f^{(2)}}
$$

- Error is 2nd order over the interval $[a, b]$
- Thus the error over the interval decreases as h^{2}.
- The slope of error vs. h on a log-log plot is 2 .

Romberg Integration

- Uses extended trapezoidal rule with two or more different integration point to integration point spacings (in this case equal to the sub-interval spacing), h, in conjunction with the general form of the error in order to compute one or more terms in the series which represents the error.
- This will then result in a higher order estimate of the integrand.
- More importantly, it will allow us to easily derive an error estimate for the numerical integrations based on the results using the different grid spacings.
- Consider

$$
I=\check{I}_{h}+E_{[a, b]-h}
$$

where
$I \equiv$ the exact integrand,
$\tilde{I}_{h} \equiv$ the approximate integral with integration point to integration point spacing h
$E_{[a, b]-h} \equiv$ the associated error.

$$
\tilde{I}_{h} \equiv \frac{h}{2}\left\lceil f(a)+f(b)+2 \sum_{i=1}^{\left(\frac{b-a}{h}-1\right)} f(a+i h)\right\rceil
$$

- In general the form of the error term if we had worked out more terms in the error series.

$$
E_{[a, b]-h}=C h^{2}+D h^{4}+E h^{6}+O(h)^{8}
$$

- Notes
- The coefficient $C=-\frac{1}{12}(b-a) \overline{\left.f^{2}\right)}$
- In general, $\mathrm{C}, \mathrm{D}, \mathrm{E}$ etc. are functions of the average of the various derivatives of f over the interval of interest.
- These coefficients are not dependent on the spacing h.
- Also we do not worry about the exact form of these coefficients.
- As far as we are concerned, they are unknown constant coefficients over the interval [a, b].
- Thus the integral

$$
I=I_{h}+C h^{2}+D h^{4}+E h^{6}+O(h)^{8}
$$

- Unknowns: $I=$ the exact integral; $C, D, E \ldots=$ the coefficients of the error term.
- Knowns: $I_{h}=$ the approximation to the integral; $h=$ the integration point spacing.
- We must generate equations to solve for some of the unknowns
- Solve for I and C. This will improve the accuracy of I to $O(h)^{4}$!
- Two unknowns \Rightarrow must have two equations \Rightarrow use two different integration point to integration point spacings.

$$
\begin{aligned}
& I=\tilde{I}_{h_{1}}+C h_{1}^{2}+D h_{1}^{4}+E h_{1}^{6}+O\left(h_{1}\right)^{8} \\
& I=\tilde{I}_{h_{2}}+C h_{2}^{2}+D h_{2}^{4}+E h_{2}^{6}+O\left(h_{2}\right)^{8}
\end{aligned}
$$

- We now have two equations and can therefore solve for 2 unknowns.
- $I=$ the exact integral is unknown: $C=$ the leading coefficient of the error term is unknown.
- We can solve for I and C.
- We can not solve for D, E, \ldots and the other coefficients since we do not have enough equations!
- We must select h_{1} and h_{2} such that $[a, b]$ is divided into an integer number of sub-intervals. Let

$$
\begin{aligned}
& h_{1}=2 h_{*} \\
& h_{2}=h_{*}=\text { base interval }
\end{aligned}
$$

- We compute the approximation to the integral twice.

$$
\begin{aligned}
2 h_{*} & \rightarrow \tilde{I}_{2 h_{*}} \\
h_{*} & \rightarrow \tilde{I}_{h_{*}}
\end{aligned}
$$

- Thus

$$
\begin{aligned}
& I=\tilde{I}_{2 h_{*}}+4 C h_{*}^{2}+16 D h_{*}^{4}+64 E h_{*}^{6}+O\left(h_{*}\right)^{8} \\
& I=\tilde{I}_{h_{*}}+C h_{*}^{2}+D h_{*}^{4}+E h_{*}^{6}+O\left(h_{*}\right)^{8}
\end{aligned}
$$

- Two equations and 2 unknowns. Thus we can solve for both I and C.

$$
\begin{gathered}
-I=-I_{2 h_{*}}-4 C h_{*}^{2}-16 D h_{*}^{4}-64 E h_{*}^{6}+O\left(h_{*}\right)^{8} \\
4 I=41_{h_{*}}+4 C h_{*}^{2}+4 D h_{*}^{4}+4 E h_{*}^{6}+O\left(h_{*}\right)^{8} \\
\Rightarrow \\
I=\frac{4 I_{h_{*}}-I_{2 h_{*}}}{3}-4 D h_{*}^{4}-20 E h_{*}^{6}+O\left(h_{*}\right)^{8}
\end{gathered}
$$

- Therefore if you have 2 second order accurate approximations to I

$$
\begin{aligned}
& I_{h_{*}} \text { using } h_{*} \\
& I_{2 h_{*}} \text { using } 2 h_{*}
\end{aligned}
$$

You can extrapolate a 4th order accurate approximation using the above formula.

- More importantly, we can estimate the errors for both the coarse and the fine integration point solutions simply by solving for C using the 2 simultaneous equations

$$
C=\frac{\tilde{I}_{h_{*}}-\tilde{I}_{2 h_{*}}}{3 h_{*}^{2}}-5 D h_{*}^{2}+O\left(h_{*}\right)^{4}
$$

- Thus the estimated error associated with the coarse integration point spacing solution, using the coarse $2 h_{*}$ and fine h_{*} integration point spacing solutions is,

$$
E_{[a, b]-2 h_{*}}=\frac{4}{3}\left(\tilde{I}_{h_{*}}-\tilde{I}_{2 h_{*}}\right)+O\left(h_{*}\right)^{4}
$$

- The estimated error associated with the fine integration point spacing solution, using the coarse $2 h_{*}$ and fine h_{*} integration point spacing solutions is,

$$
E_{[a, b]-h_{*}}=\frac{1}{3}\left(I_{h_{*}}-I_{2 h_{*}}\right)+O\left(h_{*}\right)^{4}
$$

Example

- Consider:

$$
I=\int_{0}^{8}\left(\frac{5 x^{4}}{8}-4 x^{3}+2 x+1\right) d x
$$

- Integrating exactly $I=72$
- Let's integrate numerically

$$
f(x)=\frac{5 x^{4}}{8}-4 x^{3}+2 x+1 \quad a=0 \quad b=8
$$

- Apply extended trapezoidal rule using:
- $h=2 h_{*}=8$ (using one interval of 8)
- $h=h_{*}=4$ (using two intervals of 4)
- Apply the Romberg integration rule we derived when two integral estimates were obtained using intervals $2 h_{*}$ and h_{*} to obtain a fourth order estimate for the integral
- Estimate the errors associated with the extended trapezoidal rule results
- Applying $h=2 h_{*}=8$ (using one interval of 8)

$$
\begin{aligned}
& \tilde{I}_{2 h_{*}}=\frac{2 h_{*}}{2}\left[f(a)+f(b)+2 \sum_{i=1}^{\left(\frac{x-U}{2 h_{*}}-1\right)} f\left(0+i 2 h_{*}\right)\right] \Rightarrow \\
& \tilde{I}_{2 h_{*}}=4\left[f(0)+f(8)+2 \sum_{i=1}^{0} f\left(0+i 2 h_{*}\right)\right]
\end{aligned}
$$

- Since the index i runs from 1 to 0 , we do not evaluate the summation term. Thus

$$
\begin{aligned}
& \tilde{I}_{2 h_{*}}=4[1+529] \Rightarrow \\
& I_{2 h_{*}}=2120
\end{aligned}
$$

- Applying $h=h_{*}=4$ (using two intervals of 4)

$$
\begin{aligned}
& \tilde{I}_{h_{*}}=\frac{h_{*}}{2}\left[f(a)+f(b)+2 \sum_{i=1}^{\left(\frac{x-v}{h_{*}}-1\right)} f(a+i h)\right] \Rightarrow \\
& I_{h_{*}}=2\left[f(0)+f(8)+2 \sum_{i=1}^{1} f(0+4 i)\right] \Rightarrow \\
& I_{h_{*}}=2[f(0)+f(8)+2 f(4)] \Rightarrow \\
& I_{h_{*}}=2[1+529+2 \times 87] \Rightarrow \\
& I_{h_{*}}=712
\end{aligned}
$$

- We can obtain an $O\left(h_{*}\right)^{4}$ accurate answer using the $O\left(h_{*}\right)^{2}$ trapezoidal rule results, $1_{2 h_{*}}$ and $I_{h_{*}}$

$$
\begin{aligned}
& I=\frac{4 \tilde{I}_{h_{*}}-\tilde{I}_{2 h_{*}}}{3}+O\left(h_{*}\right)^{4} \Rightarrow \\
& I=\frac{4 \times 712-2120}{3}+O\left(h_{*}\right)^{4} \Rightarrow \\
& I=242.6667+O\left(h_{*}\right)^{4}
\end{aligned}
$$

- We can also estimate the error associated with the two $O\left(h_{*}\right)^{2}$ trapezoidal rule results, $I_{2 h_{*}}$ and $Y_{h_{*}}$
- Let's estimate the error for the trapezoidal rule result with $h=2 h_{*}=8$

$$
E_{[a, b]-2 h_{*-\text { estimated }}}=\frac{4}{3}\left(\tilde{I}_{h_{*}}-\tilde{I}_{2 h_{*}}\right)+O\left(h_{*}\right)^{4}=\frac{4}{3}(712-2120)=-1877.33
$$

- Note that the actual error for the trapezoidal rule results with $h=2 h_{*}=8$

$$
E_{[a, b]-2 h_{*}-\text { actual }}=I-I_{2 h_{*}}=72-2120=-2048
$$

- Let's estimate the error for the trapezoidal rule results with $h=h_{*}=4$

$$
E_{[a, b]-h_{*}-\text { estimated }}=\frac{1}{3}\left(\check{I}_{h_{*}}-\check{I}_{2 h_{*}}\right)+O\left(h_{*}\right)^{4}=\frac{1}{3}(712-2120)=-469.33
$$

- Note that the actual error for the trapezoidal rule results with $h=h_{*}=4$ equals

$$
E_{[a, b]-h_{*}-\text { actual }}=I-\tilde{I}_{h_{*}}=72-712=-640 .
$$

Romberg Integration Using 3 Estimates of the Integral

- Let's consider using three estimates on I

$$
\begin{aligned}
& I=\tilde{I}_{h_{1}}+C h_{1}^{2}+D h_{1}^{4}+E h_{1}^{6}+O\left(h_{1}\right)^{8} \\
& I=\tilde{I}_{h_{2}}+C h_{2}^{2}+D h_{2}^{4}+E h_{2}^{6}+O\left(h_{2}\right)^{8}
\end{aligned}
$$

$$
I=\check{I}_{h_{3}}+C h_{3}^{2}+D h_{3}^{4}+E h_{3}^{6}+O\left(h_{3}\right)^{8}
$$

- Three equations \Rightarrow we can solve for three unknowns: Solve for $I=$ exact integral and C and $D=$ coefficients of the first two terms in the error series!
- Therefore we can now derive an $O(h)^{6}$ accurate approximation to I
- Apply integration point spacings: $h_{1}=2 h_{*}, h_{2}=h_{*}$ and $h_{3}=\frac{h_{*}}{2}$.
- Estimates of the integral are related to the exact integral, I, as:

$$
\begin{aligned}
& I=I_{2 h_{*}}+4 C h_{*}^{2}+16 D h_{*}^{4}+64 E h_{*}^{6}+O\left(h_{*}\right)^{8} \\
& I=I_{h_{*}}+C h_{*}^{2}+D h_{*}^{4}+E h_{*}^{6}+O\left(h_{*}\right)^{8} \\
& I=I_{\frac{h_{*}}{2}}+\frac{C}{4} h_{*}^{2}+\frac{D}{16} h_{*}^{4}+\frac{E}{64} h_{*}^{6}+O\left(h_{*}\right)^{8}
\end{aligned}
$$

- We can solve for the unknowns I, C and D !

$$
I=\frac{1}{45}\left[641_{\frac{h_{*}}{2}}-201_{h_{*}}+I_{2 h_{*}}\right]+E\left(h_{*}\right)^{6}+O\left(h_{*}\right)^{8}
$$

SUMMARY OF LECTURE 14

- Trapezoidal rule is simply applying linear interpolation between two points and integrating the approximating polynomial.
- Error for Trapezoidal Rule
- The error can be determined by computing $\int e(x) d x$ if $e(x)$ is expressed in series form.
- The error can also be determined by Taylor series expansions of the integration formula and the exact integral.
- Extended trapezoidal rule applies piecewise linear approximations and sums up individual integrals.
- Error for extended trapezoidal rule is obtained simply by adding errors over all subintervals
- Romberg Integration
- Uses trapezoidal rule with different intervals.
- Extrapolates a better answer by estimating the error.
- This can be a much more efficient process than increasing the number of intervals.
- Romberg Integration can be applied to any of the integration methods we will develop

