LECTURE 14

NUMERICAL INTEGRATION

• Find

$$I = \int_{a}^{b} f(x) dx$$

or

$$I = \int_{a}^{b} \left[\int_{u(x)}^{v(x)} f(x, y) dy \right] dx$$

- Often integration is required. However the form of f(x) may be such that analytical integration would be very difficult or impossible. Use numerical integration techniques.
- Finite element (FE) methods are based on integrating errors over a domain. Typically we use numerical integrators.
- Numerical integration methods are developed by integrating interpolating polynomials.

Trapezoidal Rule

• Trapezoidal rule uses a first degree Lagrange approximating polynomial (N = 1, N + 1 = 2 nodes, linear interpolation).

• Define the linear interpolating function

$$g(x) = f_o\left(\frac{x_1 - x}{x_1 - x_o}\right) + f_1\left(\frac{x - x_o}{x_1 - x_o}\right)$$

• Establish the integration rule by computing $I = \int_{x_0}^{x_1} f(x) dx = \int_{x_0}^{x_1} (g(x) + e(x)) dx$

$$I = \int_{x_o}^{x_1} g(x)dx + E \implies$$

$$I = \int_{x_o}^{x_1} \left[f_o \left(\frac{x_1 - x}{x_1 - x_o} \right) + f_1 \left(\frac{x - x_o}{x_1 - x_o} \right) \right] dx + E \implies$$

$$I = \left[f_o \left(\frac{x_1 x - \frac{x^2}{2}}{x_1 - x_o} \right) + f_1 \left(\frac{x^2 - x_o}{x_1 - x_o} \right) \right]_{x_o}^{x_1} + E \implies$$

$$I = \left[f_o \left(\frac{x_1^2 - \frac{x_1^2}{2}}{x_1 - x_o} \right) + f_1 \left(\frac{\frac{x_1^2}{2} - x_o x_1}{x_1 - x_o} \right) - f_o \left(\frac{x_1 x_o - \frac{x_o^2}{2}}{x_1 - x_o} \right) - f_1 \left(\frac{\frac{x_o^2}{2} - x_o^2}{x_1 - x_o} \right) + E \right]$$

Trapezoidal Rule

$$I = \left(\frac{x_1 - x_o}{2}\right) [f_o + f_1] + E$$

- Trapezoidal Rule integrates the area of the trapezoid between the two data or interpolation points.
- Evaluating the error for trapezoidal rule.
 - The error E is dependent on the integral of the difference e(x) = f(x) g(x). However integrating the ξ dependent error approximation for the interpolating function does not work out in general since ξ is a function of x!
 - We must express e(x) in terms of a series of terms expanded about x_o in order to evaluate $E = \int_{x_o}^{x_1} e(x) dx$ correctly.
 - An alternative strategy is to evaluate

$$E = \int_{x_o}^{x_1} f(x)dx - \left(\frac{x_1 - x_o}{2}\right)(f_o + f_1)$$

by developing Taylor series expansions for f(x), f_o and f_1 .

• We do note that as $x_1 - x_0 = h \downarrow 0 \implies E \downarrow 0$

Evaluation of the Error for Trapezoidal Rule

Evaluation of the error by integrating e(x)

• We note that

$$E \equiv I - \int_{x_o}^{x_N} g(x) dx \quad \Rightarrow \quad E \equiv \int_{x_o}^{x_N} f(x) dx - \int_{x_o}^{x_N} g(x) dx$$

However

$$e(x) \equiv f(x) - g(x) \qquad \Rightarrow \qquad \int_{x_0}^{x_N} e(x) dx = \int_{x_0}^{x_N} f(x) dx - \int_{x_0}^{x_N} g(x) dx$$

• Thus

$$E = \int_{x_o}^{x_N} e(x) dx$$

• Recall that e(x) for Lagrange interpolation was expressed as:

$$e(x) = \frac{(x - x_o)(x - x_1)...(x - x_N)}{(N+1)!} f^{(N+1)}(\xi)$$

- Notes
 - Procedure applies to higher order integration rules as well.
 - In general ξ is a function of x
 - Neglecting the dependence of $\xi(x)$, can lead to incorrect results. e.g. for Simpson's $\frac{1}{3}$ rule you will integrate out the ξ dependent term and the result would be E=0!
 - A way you can apply $E = \int_{x_0}^{x_1} e(x) dx$ is to take e(x) as a series of terms! Then we will always get the correct answer!

Evaluation of the error for Trapezoidal Rule by Taylor Series expansion

$$E = I - \left(\frac{x_1 - x_o}{2}\right) [f_o + f_1] \qquad \Rightarrow \qquad$$

$$E = \int_{x_o}^{x_1} f(x) dx - \left(\frac{x_1 - x_o}{2}\right) (f_o + f_1)$$

• Let's now develop Taylor series expansions for f(x), f_o and f_1 about $\bar{x} = \frac{x_o + x_1}{2}$

• In general Taylor series expansion about \bar{x} :

$$f(x) = f(\bar{x}) + (x - \bar{x})f^{(1)}(\bar{x}) + \frac{(x - \bar{x})^2}{2!}f^{(2)}(\bar{x}) + O(x - \bar{x})^3$$

• Now evaluate $f_o = f(x_o)$ using the Taylor series

$$f_o = f(\bar{x}) + (x_o - \bar{x})f^{(1)}(\bar{x}) + \frac{(x_o - \bar{x})^2}{2}f^{(2)}(\bar{x}) + O(x_o - \bar{x})^3$$

• However since $x_o - \bar{x} = -\frac{h}{2}$

$$f_o = f(\bar{x}) - \frac{h}{2} f^{(1)}(\bar{x}) + \frac{h^2}{8} f^{(2)}(\bar{x}) + O(h)^3$$

• Similarly

$$f_1 = f(\bar{x}) + \frac{h}{2} f^{(1)}(\bar{x}) + \frac{h^2}{8} f^{(2)}(\bar{x}) + O(h)^3$$

• Let's substitute in for f(x), f_o and f_1 into the expression for E

$$E = \int_{x_0}^{x_1} \left[f(\bar{x}) + (x - \bar{x}) f^{(1)}(\bar{x}) + \frac{(x - \bar{x})^2}{2!} f^{(2)}(\bar{x}) + O(x - \bar{x})^3 \right] dx$$

$$- \left(\frac{x_1 - x_0}{2} \right) \left[f(\bar{x}) - \frac{h}{2} f^{(1)}(\bar{x}) + \frac{h^2}{8} f^{(2)}(\bar{x}) + O(h)^3 + f(\bar{x}) + \frac{h}{2} f^{(1)}(\bar{x}) + \frac{h^2}{8} f^{(2)}(\bar{x}) + O(h)^3 \right]$$

$$\Rightarrow$$

$$E = \left[f(\bar{x}) x + \frac{(x - \bar{x})^2}{2} f^{(1)}(\bar{x}) + \frac{(x - \bar{x})^3}{6} f^{(2)}(\bar{x}) + O(x - \bar{x})^4 \right]_{x_0}^{x_1}$$

$$- \frac{(x_1 - x_0)}{2} \left[2f(\bar{x}) + \frac{h^2}{4} f^{(2)}(\bar{x}) + O(h)^3 \right]$$

$$E = f(\bar{x})(x_1 - x_o) + \frac{(x_1 - \bar{x})^2}{2} f^{(1)}(\bar{x}) - \frac{(x_o - \bar{x})^2}{2} f^{(1)}(\bar{x})$$

$$+ \frac{(x_1 - \bar{x})^3}{6} f^{(2)}(\bar{x}) - \frac{(x_o - \bar{x})^3}{6} f^{(2)}(\bar{x}) + O(x_1 - \bar{x})^4 + O(x_o - \bar{x})^4$$

$$-(x_1 - x_o)f(\bar{x}) - \frac{(x_1 - x_o)}{8} h^2 f^{(2)}(\bar{x}) + \frac{(x_1 - x_o)}{2} O(h)^3$$

$$\Rightarrow$$

$$E = \frac{h^2}{8} f^{(1)}(\bar{x}) - \frac{h^2}{8} f^{(1)}(\bar{x}) + \frac{h^3}{48} f^{(2)}(\bar{x}) + \frac{h^3}{48} f^{(2)}(\bar{x}) + O(h)^4 - \frac{h^3}{8} f^{(2)}(\bar{x}) + O(h)^4$$

$$\Rightarrow$$

$$E = -\frac{h^3}{12} f^{(2)}(\bar{x})$$

• Notes

- Higher order terms have been truncated in this error expression.
- This integration will be exact only for f(x) = linear.
- However it is *third* order accurate in h
- Error evaluation procedure using T.S. applies to higher order methods as well

Extended Trapezoidal Rule

• Apply trapezoidal rule to multiple "sub-intervals"

- Integrate each sub-interval with trapezoidal rule and sum
 - Split [a, b] into N equispaced sub-intervals with $h = \frac{b-a}{N}$
 - Compute *I* as:

$$I = \int_{a}^{b} f(x)dx = \sum_{i=0}^{N-1} \left(\int_{x_{i}}^{x_{i+1}} f(x)dx \right) \implies$$

$$I = \left(\frac{x_1 - x_o}{2}\right)(f_o + f_1) + \left(\frac{x_2 - x_1}{2}\right)(f_1 + f_2) + \dots + \left(\frac{x_N - x_{N-1}}{2}\right)(f_{N-1} + f_N) + E_{[a, b]}$$

$$\Rightarrow$$

$$I = \frac{h}{2}(f_0 + 2f_1 + 2f_2 + \dots + 2f_{N-1} + f_N) + E_{[a, b]}$$

where

$$f_{o} = f(a)$$

$$f_{1} = f(a+h)$$

$$f_{2} = f(a+2h)$$

$$\vdots$$

$$\vdots$$

$$f_{i} = f(a+ih)$$

• Thus extended trapezoidal rule can be expressed as:

$$I = \frac{h}{2} \left[f(a) + f(b) + 2 \sum_{i=1}^{N-1} f(a+ih) \right]$$
 where $N = \frac{b-a}{h}$

• Error is simply the sum of the individual errors:

$$E_{[a,b]} = \sum_{i=1}^{N} -\frac{1}{12}h^3 f^{(2)}(\bar{x}_i)$$

where \bar{x}_i = the average x within each sub-interval

$$E_{[a,b]} = -\frac{1}{12}(b-a)h^2 \cdot \frac{1}{N} \sum_{i=1}^{N} f^{(2)}(\bar{x}_i)$$

• Defining the average of the second derivatives

$$\overline{f^{(2)}} \equiv \frac{1}{N} \sum_{i=1}^{N} f^{(2)}(\bar{x}_i)$$

• Thus

$$E_{[a,b]} = -\frac{1}{12}(b-a)h^2\overline{f^{(2)}}$$

- Error is 2nd order over the interval [a, b]
 - Thus the error over the interval decreases as h^2 .
 - The slope of error vs. h on a log-log plot is 2.

Romberg Integration

- Uses extended trapezoidal rule with two or more different integration point to integration point spacings (in this case equal to the sub-interval spacing), h, in *conjunction* with the general form of the error in order to compute one or more terms in the series which represents the error.
 - This will then result in a higher order estimate of the integrand.
 - More importantly, it will allow us to easily derive an error estimate for the numerical integrations based on the results using the different grid spacings.
- Consider

$$I = \tilde{I}_h + E_{[a, b] - h}$$

where

 $I \equiv$ the exact integrand,

 $\mathcal{I}_h \equiv$ the approximate integral with integration point to integration point spacing h $E_{[a,b]-h} \equiv$ the associated error.

$$\mathfrak{I}_h \equiv \frac{h}{2} \left[f(a) + f(b) + 2 \sum_{i=1}^{\left(\frac{b-a}{h}-1\right)} f(a+ih) \right]$$

• In general the form of the error term if we had worked out more terms in the error series.

$$E_{[a,b]-h} = Ch^2 + Dh^4 + Eh^6 + O(h)^8$$

- Notes
 - The coefficient $C = -\frac{1}{12}(b-a)\overline{f^{(2)}}$
 - In general, C, D, E etc. are functions of the average of the various derivatives of f over the interval of interest.
 - These coefficients are not dependent on the spacing h.
 - Also we do not worry about the exact form of these coefficients.
 - As far as we are concerned, they are unknown constant coefficients over the interval [a, b].

• Thus the integral

$$I = I_h + Ch^2 + Dh^4 + Eh^6 + O(h)^8$$

- Unknowns: I = the exact integral; C, D, E... = the coefficients of the error term.
- Knowns: I_h = the approximation to the integral; h = the integration point spacing.
- We must generate equations to solve for some of the unknowns
 - Solve for I and C. This will improve the accuracy of I to $O(h)^4$!
- Two unknowns \Rightarrow must have two equations \Rightarrow use two different integration point to integration point spacings.

$$I = \mathcal{I}_{h_1} + Ch_1^2 + Dh_1^4 + Eh_1^6 + O(h_1)^8$$

$$I = \mathcal{I}_{h_2} + Ch_2^2 + Dh_2^4 + Eh_2^6 + O(h_2)^8$$

- We now have two equations and can therefore solve for 2 unknowns.
 - I = the exact integral is unknown: C = the leading coefficient of the error term is unknown.
 - We can solve for *I* and *C*.
 - We can not solve for D, E, ... and the other coefficients since we do not have enough equations!
- We must select h_1 and h_2 such that [a, b] is divided into an integer number of sub-intervals. Let

$$h_1 = 2h_*$$

 $h_2 = h_* = base\ interval$

• We compute the approximation to the integral twice.

$$2h_* \to \tilde{I}_{2h_*}$$

$$h_* \to \tilde{I}_{h_*}$$

• Thus

$$I = \tilde{I}_{2h_*} + 4Ch_*^2 + 16Dh_*^4 + 64Eh_*^6 + O(h_*)^8$$

$$I = \tilde{I}_{h_*} + Ch_*^2 + Dh_*^4 + Eh_*^6 + O(h_*)^8$$

• Two equations and 2 unknowns. Thus we can solve for both I and C.

$$-I = -\tilde{I}_{2h_*} - 4Ch_*^2 - 16Dh_*^4 - 64Eh_*^6 + O(h_*)^8$$

$$4I = 4\tilde{I}_{h_*} + 4Ch_*^2 + 4Dh_*^4 + 4Eh_*^6 + O(h_*)^8$$

$$\Rightarrow$$

$$I = \frac{4\tilde{I}_{h_*} - \tilde{I}_{2h_*}}{3} - 4Dh_*^4 - 20Eh_*^6 + O(h_*)^8$$

• Therefore if you have 2 second order accurate approximations to I

$$\tilde{I}_{h_*}$$
 using h_*

$$\tilde{I}_{2h_*}$$
 using $2h_*$

You can extrapolate a 4th order accurate approximation using the above formula.

• More importantly, we can estimate the errors for both the coarse and the fine integration point solutions simply by solving for C using the 2 simultaneous equations

$$C = \frac{I_{h_*} - I_{2h_*}}{3h_*^2} - 5Dh_*^2 + O(h_*)^4$$

• Thus the estimated error associated with the *coarse* integration point spacing solution, using the coarse $2h_*$ and fine h_* integration point spacing solutions is,

$$E_{[a,b]-2h_*} = \frac{4}{3}(I_{h_*}-I_{2h_*}) + O(h_*)^4$$

• The estimated error associated with the *fine* integration point spacing solution, using the coarse $2h_*$ and fine h_* integration point spacing solutions is,

$$E_{[a,b]-h_*} = \frac{1}{3}(I_{h_*}-I_{2h_*}) + O(h_*)^4$$

Example

• Consider:

$$I = \int_{0}^{8} \left(\frac{5x^4}{8} - 4x^3 + 2x + 1\right) dx$$

- Integrating exactly I = 72
- Let's integrate numerically

$$f(x) = \frac{5x^4}{8} - 4x^3 + 2x + 1$$
 $a = 0$ $b = 8$

- Apply extended trapezoidal rule using:
 - $h = 2h_* = 8$ (using one interval of 8)
 - $h = h_* = 4$ (using two intervals of 4)
- Apply the Romberg integration rule we derived when two integral estimates were obtained using intervals $2h_*$ and h_* to obtain a fourth order estimate for the integral
- Estimate the errors associated with the extended trapezoidal rule results

• Applying $h = 2h_* = 8$ (using one interval of 8)

$$\tilde{I}_{2h_*} = \frac{2h_*}{2} \left[f(a) + f(b) + 2 \sum_{i=1}^{\left(\frac{8-0}{2h_*}-1\right)} f(0+i2h_*) \right] \Rightarrow$$

$$\tilde{I}_{2h_*} = 4 \left[f(0) + f(8) + 2 \sum_{i=1}^{0} f(0 + i2h_*) \right]$$

• Since the index i runs from 1 to 0, we do not evaluate the summation term. Thus

$$\tilde{I}_{2h_*} = 4[1 + 529] \implies$$

$$\tilde{I}_{2h_*} = 2120$$

• Applying $h = h_* = 4$ (using two intervals of 4)

$$\widetilde{I}_{h_*} = \frac{h_*}{2} \left[f(a) + f(b) + 2 \sum_{i=1}^{\left(\frac{8-0}{h_*}-1\right)} f(a+ih) \right] \quad \Rightarrow \quad$$

$$\tilde{I}_{h_*} = 2 \left[f(0) + f(8) + 2 \sum_{i=1}^{1} f(0+4i) \right] \Rightarrow$$

$$\tilde{I}_{h_*} = 2[f(0) + f(8) + 2f(4)] \Rightarrow$$

$$I_{h_*} = 2[1 + 529 + 2 \times 87] \Rightarrow$$

$$\tilde{I}_{h_*} = 712$$

• We can obtain an $O(h_*)^4$ accurate answer using the $O(h_*)^2$ trapezoidal rule results, \mathcal{I}_{2h_*} and \mathcal{I}_{h_*}

$$I = \frac{4\tilde{I}_{h_*} - \tilde{I}_{2h_*}}{3} + O(h_*)^4 \implies$$

$$I = \frac{4 \times 712 - 2120}{3} + O(h_*)^4 \implies$$

$$I = 242.6667 + O(h_*)^4$$

- We can also estimate the error associated with the two $O(h_*)^2$ trapezoidal rule results, \mathcal{I}_{2h_*} and \mathcal{I}_{h_*}
 - Let's estimate the error for the trapezoidal rule result with $h = 2h_* = 8$

$$E_{[a,b]-2h_*-estimated} = \frac{4}{3}(\tilde{I}_{h_*}-\tilde{I}_{2h_*}) + O(h_*)^4 = \frac{4}{3}(712-2120) = -1877.33$$

• Note that the actual error for the trapezoidal rule results with $h = 2h_* = 8$

$$E_{[a,b]-2h_*-actual} = I - I_{2h_*} = 72 - 2120 = -2048.$$

• Let's estimate the error for the trapezoidal rule results with $h = h_* = 4$

$$E_{[a,b]-h_*-estimated} = \frac{1}{3}(\tilde{I}_{h_*}-\tilde{I}_{2h_*}) + O(h_*)^4 = \frac{1}{3}(712-2120) = -469.33$$

• Note that the actual error for the trapezoidal rule results with $h = h_* = 4$ equals

$$E_{[a,b]-h_*-actual} = I - \tilde{I}_{h_*} = 72 - 712 = -640.$$

Romberg Integration Using 3 Estimates of the Integral

• Let's consider using *three* estimates on *I*

$$I = I_{h_1} + Ch_1^2 + Dh_1^4 + Eh_1^6 + O(h_1)^8$$

$$I = I_{h_2} + Ch_2^2 + Dh_2^4 + Eh_2^6 + O(h_2)^8$$

$$I = I_{h_3} + Ch_3^2 + Dh_3^4 + Eh_3^6 + O(h_3)^8$$

- Three equations \Rightarrow we can solve for *three* unknowns: Solve for I = exact integral and C and D = coefficients of the first two terms in the error series!
- Therefore we can now derive an $O(h)^6$ accurate approximation to I
- Apply integration point spacings: $h_1 = 2h_*$, $h_2 = h_*$ and $h_3 = \frac{h_*}{2}$.
- Estimates of the integral are related to the exact integral, I, as:

$$I = \tilde{I}_{2h_*} + 4Ch_*^2 + 16Dh_*^4 + 64Eh_*^6 + O(h_*)^8$$

$$I = \tilde{I}_{h_*} + Ch_*^2 + Dh_*^4 + Eh_*^6 + O(h_*)^8$$

$$I = \tilde{I}_{\frac{h_*}{2}} + \frac{C}{4}h_*^2 + \frac{D}{16}h_*^4 + \frac{E}{64}h_*^6 + O(h_*)^8$$

• We can solve for the unknowns I, C and D!

$$I = \frac{1}{45} \left[64 \tilde{I}_{h_*} - 20 \tilde{I}_{h_*} + \tilde{I}_{2h_*} \right] + E(h_*)^6 + O(h_*)^8$$

SUMMARY OF LECTURE 14

- Trapezoidal rule is simply applying linear interpolation between two points and integrating the approximating polynomial.
- Error for Trapezoidal Rule
 - The error can be determined by computing $\int_{0}^{x} e(x)dx$ if e(x) is expressed in series form.
 - The error can also be determined by Taylor series expansions of the integration formula and the exact integral.
- Extended trapezoidal rule applies piecewise linear approximations and sums up individual integrals.
- Error for extended trapezoidal rule is obtained simply by adding errors over all subintervals

- Romberg Integration
 - Uses trapezoidal rule with different intervals.
 - Extrapolates a better answer by estimating the error.
 - This can be a much more efficient process than increasing the number of intervals.
- Romberg Integration can be applied to any of the integration methods we will develop