CE 30125 - Lecture 14

LECTURE 14

NUMERICAL INTEGRATION
e Find
b
I = j f(x)dx
or

b[ v(x)
I= j‘ j f(x,y)dy]dx

al u(x)

e Often integration is required. However the form of f(x) may be such that analytical
integration would be very difficult or impossible. Use numerical integration techniques.

 Finite element (FE) methods are based on integrating errors over a domain. Typically we
use numerical integrators.

® Numerical integration methods are developed by integrating interpolating polyno-
mials.
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Trapezoidal Rule

e Trapezoidal rule uses a first degree Lagrange approximating polynomial (N = 1,
N+ 1 = 2 nodes, linear interpolation).

i
0 )
g(x) 11
@)
X0 X]

e Define the linear interpolating function

s = £(F) +A (=)

Xo
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* Trapezoidal Rule

X —X X—X
I = I[fo( )+f1( ﬂde -
X=Xy X=Xy
x()
2 2 X1
X x— o T xx
1 0
I=\f, 2 +fi 2 +E =
X1 =X X1 =X
xO
= 2
, X xf X,
xX{ —— - — XX, XX, — =
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I = + —
Jo X —x, Ji x| —x, Jo x| —X,
X{—X
I = ( - ")[fo+f1]+E
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» Trapezoidal Rule integrates the area of the trapezoid between the two data or interpola-
tion points.

» Evaluating the error for trapezoidal rule.

e The error E 1s dependent on the integral of the difference e(x) = f(x)-g(x) .
However integrating the £ dependent error approximation for the interpolating
function does not work out in general since & is a function of x!

* We must express e(x) in terms of a series of terms expanded about x, in order to
X1
evaluate £ = je(x)dx correctly.

Xo

* An alternative strategy is to evaluate

X

E = jf(x)dx—(

Xo

X1~

0+ )

by developing Taylor series expansions for f(x), f, and f, .

* We do note thatas x;, —x, = h L0 = E |0
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Evaluation of the Error for Trapezoidal Rule

Evaluation of the error by integrating e(x)

* We note that

E=I- jg(x)dx -~ E= jf(x)dx— jg(x)dx
e However

e =f(x)-g(x) = [e(x)dx = [fx)dx- [g(x)dx
e Thus

E'::.[e(x)dx

Xo

* Recall that e(x) for Lagrange interpolation was expressed as:

e(x) =

(x=x,)(x=xy)...(x=xp) N+1)
LS VD)
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* Notes

 Procedure applies to higher order integration rules as well.

* In general ¢ is a function of x

* Neglecting the dependence of &(x), can lead to incorrect results. e.g. for Simpson’s

3 rule you will integrate out the & dependent term and the result would be E = 0!
X1

* A way you can apply E = Ie(x)dx is to take e(x) as a series of terms! Then we will

o

always get the correct answer!

Evaluation of the error for Trapezoidal Rule by Taylor Series expansion

E = 1—(x1;x0)[f0+f1] =

E = jlf(aodx—(x1 )+ )

o
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. : X, +Xx
* Let’s now develop Taylor series expansions for f(x), f, and f; about x = - 5 !
h
@ X @
Y0 x *

 In general Taylor series expansion about x:

£) = ) + (=00 + E40) + 0 - )
* Now evaluate f, = f(x,) using the Taylor series

(x,—X)?

fo = J3) + (x, = )f V() + —5—fP(X) + O(x, - X)°

NS

* However since x, — X = —
_ h _ h2 _
f, = f(x) - 3 fD(x) + gf‘z)(x) +O0(h)3
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e Similarly

2
fi = ) + 5 SO + 2 fD(E) + 0(h)?
 Let’s substitute in for f(x), f, and f, into the expression for E

X1

E = J[f()‘c) + (x—2)f () + (’C;—f)zﬂbm + O(x—xﬂdx

Xo

_ 2 2
_(xl 5 xo) [f(i) _ gf(l)(x) + %ﬂz)(a‘c) + O(h)3 + f(%) + g JOx) + %f(%(x) + O(h)ﬂ

=
E = [f()'c)x + O 5+ O 05 4 o —X)‘Tl

7 6 .
(x1 —xo)

2
2 2f6) + L fO@) + 0’|

=
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(—)2 (—)2

E = f(x)(x,—x,) + f(x) - f(x)
- )3 e )3 )
F2)(x) - A )(x)+0(x1 x)4+0(x —x)4
(X 2 42) (x) —x,) 3
—(x) = x )f(X) = ——F— hﬂ (x) + O(h)
=
h? . h? K3 K3 i} h3 _
= £f V() - /D) + 7 OE) + TfOE) + O(h)* = TfO(E) + O(h)?
-

E = — h_sf(z)(j;)
12
* Notes

* Higher order terms have been truncated in this error expression.
e This integration will be exact only for f(x) = linear.
» However it is third order accurate in h

* Error evaluation procedure using T.S. applies to higher order methods as well

p. 14.9



Extended Trapezoidal Rule

e Apply trapezoidal rule to multiple “sub-intervals”

P IN_— fi
0 fi

X
a b
XO X] .X'2 .Xfi xN

* Integrate each sub-interval with trapezoidal rule and sum

b—-a

* Split [a, b] Into N equispaced sub-intervals with 4 =

e Compute [ as:

b N-1 (*i+1
I= jf(x)dx 2> [jf(x)de -

i=0 X;

p. 14.10
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. (xlgxo)(fg+f1)+(X2;xl)(fl +f2)+m+(%)GN_I+fN)+E[a,b]

=

h
I = E(]‘0+2f1+2f2+ +2fN_1 +fN)+E[a,b]

where
fo = fla)
fi = fla+h)
fo = fla+2h)
f = f(;z+ih)

* Thus extended trapezoidal rule can be expressed as:

N—-1
I = gf(a)+f(b)+2 Zf(a+ih) where N =

i=1

b—a
h

p. 14.11
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 Error is simply the sum of the individual errors:

N
1.3,2),_
By = Z'l—zhf( (X;)
i=1

where x; = the average x within each sub-interval

N
1 1 ;
Epgp = =~ 30— a)h?- 53" fA(x)
i=1
* Defining the average of the second derivatives
N
1
2) = — 2)(x.
i=1
e Thus
1 R
Eiq.) = - 130 - h®

e Error 1s 2nd order over the interval [a, 5]
e Thus the error over the interval decreases as k2.

* The slope of error vs. 4 on a log-log plot is 2.
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Romberg Integration

e Uses extended trapezoidal rule with two or more different integration point to integra-
tion point spacings (in this case equal to the sub-interval spacing), i, in conjunction
with the general form of the error in order to compute one or more terms in the series
which represents the error.

e This will then result in a higher order estimate of the integrand.

* More importantly, it will allow us to easily derive an error estimate for the numerical
integrations based on the results using the different grid spacings.

e Consider

I == 7h+E[Cl,b]—h
where

[ = the exact integrand,
I, = the approximate integral with integration point to integration point spacing
Ep, »1_»= the associated error.

” (5541 ‘
fla) +f(D) +2 Z fla+ih)

i=1

N
=
Il
oS
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 In general the form of the error term if we had worked out more terms in the error series.
E(,py_p = Ch*+ Dh*+ Eh® + O(h)8
* Notes
* The coefficient C = — 1—12(19 — a)f®

* In general, C, D, E etc. are functions of the average of the various derivatives of f
over the interval of interest.

* These coefficients are not dependent on the spacing 4.
* Also we do not worry about the exact form of these coefficients.

» As far as we are concerned, they are unknown constant coefficients over the interval
la, D].

p. 14.14
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e Thus the integral

I =1,+Ch?2+Dh*+Eh®+0O(h)8

e Unknowns: I = the exact integral; C, D, E... = the coefficients of the error term.

e Knowns: 7, = the approximation to the integral; » = the integration point
spacing.

* We must generate equations to solve for some of the unknowns

* Solve for I and C. This will improve the accuracy of 7 to O(h)*!

* Two unknowns = must have two equations = use two different integration point to inte-
gration point spacings.

I =1, +Chi +Dht +ER} +0(h))®

I =1T,,+Ch3 +Dh3 +Eh§ +O0(h,)®

p. 14.15
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* We now have two equations and can therefore solve for 2 unknowns.

e | = the exact integral is unknown: C = the leading coefficient of the error term is
unknown.

* We can solve for I and C.

* We can not solve for D, E, ... and the other coefficients since we do not have enough
equations!

* We must select i, and &, such that [q, b] 1s divided into an integer number of sub-inter-
vals. Let

h, = h. = base interval

* We compute the approximation to the integral twice.

h* — Th*

p. 14.16
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e Thus
I = To,, +4Ch? +16Dh* +64ERS + O(h,)3
[ =1, +Ch?2 +Dht +ERS +0(h,)8

* Two equations and 2 unknowns. Thus we can solve for both 7 and C.
I = -1, —4Ch? —16Dh* —64ERS + O(h,)®

4] = 41, + 4Ch? +4Dh% +4EhS +O(h )8
=

I = 3 —~4Dh$ -20ERS +O(h )8

» Therefore if you have 2 second order accurate approximations to 1
I;,. using h.
Iy, using 24,

You can extrapolate a 4th order accurate approximation using the above formula.

p. 14.17
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* More importantly, we can estimate the errors for both the coarse and the fine integration
point solutions simply by solving for C using the 2 simultaneous equations

Th* - 72h*

C = ————5Dh. +0(h,)*
3h

*k

» Thus the estimated error associated with the coarse integration point spacing solution,
using the coarse 2h. and fine &, integration point spacing solutions is,

4
Erypy-2n, = 3In.~Ton,) + Oo(h,)*

» The estimated error associated with the fine integration point spacing solution, using the
coarse 2h, and fine A, integration point spacing solutions is,

1

p. 14.18
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Example

e Consider:
; 4
_[(5x 3 )
I = "‘(?—4)6' +2x+1 dx
0

Integrating exactly I = 72

Let’s integrate numerically

5.x4 3
f()C):?—LI-x +2x+ 1 a=20 b=28

Apply extended trapezoidal rule using:

* h = 2h, = 8 (using one interval of 8)

* h = h, = 4 (using two intervals of 4)

Apply the Romberg integration rule we derived when two integral estimates were
obtained using intervals 24. and 4. to obtain a fourth order estimate for the integral

Estimate the errors associated with the extended trapezoidal rule results

p. 14.19
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e Applying h = 2h, = 8 (using one interval of 8)

I (82;:_1) |
2h.
I, = 5 fla) +f(b) +2 Z f(0+1i2h.) =

i=1

0

Ly, = 4]1(0) +f(8)+22f(0+i2h*)

i=1

e Since the index i runs from 1 to O, we do not evaluate the summation term. Thus
Lp.=4[1+529] =

Ly, = 2120
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* Applying h = h, = 4 (using two intervals of 4)

_ (%)—IJ -
I = > |fl@)+f(0)+2 Y fla+ih)| =

i=1

ol

1

2| f(0) +f(8)+22f(0+4i) =

i=1

=
I

=
*
I

2[(0) +f(8) +2f(4)] =

I, = 2[1+529+2%x87] =

T, = 712
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* We can obtain an O(h.)* accurate answer using the O(h.)? trapezoidal rule results, Ty,
and 1,

47h*_72h*
I = ———3———+O(h*)4 =
7= 4X7123_2120+0(h*)4 N

I = 242.6667 + O(h.)*

* We can also estimate the error associated with the two O(h.)? trapezoidal rule results,
I, and Ty,

* Let’s estimate the error for the trapezoidal rule result with 4 = 2h, = 8

4 4
E4, b)-2h. - estimated = 5(7h;k—72h*)+ O(h)* = §(712—2120)

—1877.33

 Note that the actual error for the trapezoidal rule results with & = 24, = 8

p. 14.22
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E, = I-Ty, = 72-2120 = —2048.

a,b]l-2h.—actual

* Let’s estimate the error for the trapezoidal rule results with 7 = h, = 4
1 1
E[a, b] - h. — estimated — g(lh* —Ip,) + O(h*)4 = 3(712 —2120) = —469.33

* Note that the actual error for the trapezoidal rule results with 2 = h. = 4 equals

E| =1-1, = 72-712 = -640.

a,b]l—-h.—actual

Romberg Integration Using 3 Estimates of the Integral

» Let’s consider using three estimates on 1
I =1, +Chi +Dh} +EhS +0(h,}

I =1y +Ch3 +Dh3 +EhS +O0(h,}

p. 14.23



I =1y +Chi +Dhy +EhS +O0(h,)

and D = coefficients of the first two terms in the error series!

I =

I =

Apply integration point spacings: h, = 2h., h,

Therefore we can now derive an O(h)% accurate approximation to /

*

= h. andh3:7

Estimates of the integral are related to the exact integral, I, as:

L. +4Ch? +16Dhy +64ERS + O(h, )

Ih* + Chﬁ

o C
"ty
2

D 4 E ¢
W2 o+ =Zpt ¢ =S
T 16" T6a

* We can solve for the unknowns 7, C and D!

p. 14.24

+Dht +ERS + 0}

+O(h,}
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Three equations = we can solve for three unknowns: Solve for I = exact integral and C
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=21 {641

45 207h*+72h*} +E(h:)%+O(h.)8

2

SUMMARY OF LECTURE 14

Trapezoidal rule is simply applying linear interpolation between two points and inte-
grating the approximating polynomial.

Error for Trapezoidal Rule
X

e The error can be determined by computing je(x)dx if e(x) is expressed in series

X
form. ?

* The error can also be determined by Taylor series expansions of the integration
formula and the exact integral.

Extended trapezoidal rule applies piecewise linear approximations and sums up indi-
vidual integrals.

Error for extended trapezoidal rule is obtained simply by adding errors over all sub-
intervals

p. 14.25
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* Romberg Integration
* Uses trapezoidal rule with different intervals.
» Extrapolates a better answer by estimating the error.

* This can be a much more efficient process than increasing the number of intervals.

* Romberg Integration can be applied to any of the integration methods we will develop

p. 14.26



