CE 30125 - Lecture 16

LECTURE 16
GAUSS OUADRATURE

* In general for Newton-Cotes (equispaced interpolation points/ data points/ integration
points/ nodes).

XE

jf(x)dx = hiw f,+w f1+...+wy [yl +E

X

-a— closed formula

@
Xx=X0 X1 X XgE = XN

* Note that for Newton-Cotes formulae only the weighting coefficients w; were unknown
and the x, were fixed
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* However the number of and placement of the integration points influences the accuracy
of the Newton-Cotes formulae:

* N even — N'" degree interpolation function exactly integrates an N + 17 degree poly-
nomial — This is due to the placement of one of the data points.

* N odd — N degree interpolation function exactly integrates an N degree polyno-
mial.

® Concept: Let’s allow the placement of the integration points to vary such that we
further increase the degree of the polynomial we can integrate exactly for a given
number of integration points.

e In fact we can integrate an 2N + 1 degree polynomial exactly with only N + 1 integra-
tion points
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» Assume that for Gauss Quadrature the form of the integration rule is

I Ef(x)dx = [w, f,+wif1+...+wyfyl+E

N
®
Jo
( }
/3
/7 °
g
f | I f
Xy Xg X] X7 X3 Xy Xp

* Inderiving (not applying) these integration formulae

* Location of the integration points, x; i = O, N are unknown

* Integration formulae weights, w, i = O, N are unknown

e 2(N+ 1) unknowns — we will be able to exactly integrate any 2N + 1 degree polyno-
mial!
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Derivation of Gauss Quadrature by Integrating Exact Polynomials and Matching

Derive 1 point Gauss-Ouadrature

e 2 unknowns w,, x, which will exactly integrate any linear function

Let the general polynomial be
f(x) = Ax+B

where the coefficients A, B can equal any value

Also consider the integration interval to be [-1, + 1] such that x¢ = -1 and x; = + 1 (no
loss in generality since we can always transform coordinates).

+1

[ fxdx = w, f(x,)

-1

Substituting in the form of f(x)

+1
j(Ax+B)dx = w,(Ax,+B) =

-1
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xz +1
[A§+BXJ 1 = w,(Ax,+B) =

A(0)+B(2) = A(x,w,)+B(w,)
* In order for this to be true for any 1st degree polynomial (i.e. any A and B).

0=xw,
2 =w

o

* Therefore x, = 0, w, = 2 for 1 point (N = 1) Gauss Quadrature.

\fno\<f(x)

-1 )CO +/

* We can integrate exactly with only 1 point for a linear function while for Newton-Cotes
we needed two points!
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Derive a 2 point Gauss Quadrature Formula

The general form of the integration formula is
I = WO fO + Wl fl

* w,,x,, w,x, are all unknowns

0’

4 unknowns = we can fit a 3rd degree polynomial exactly

f(x) = Ax3+Bx?+Cx+D

Substituting in for f(x) into the general form of the integration rule

+1

[ fodx = w, flx,)+wy flx)

-1
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+1
I[Ax3+Bx2+Cx+D]dx = wo[sz+Bx% +Cx0+D]+w1[Ax% +Bx% +Cx; + D]

-1

-
4 3 2 +1
[A: +B;C +C; +Dx]_1 = w,(Ax} +Bx2 +Cx,+D)+w(Ax] +Bx} +Cx;+D)
=

Alw x} +wxi ]+B[wox% +w X7 —§}+C[w0x0+w1xl]+D[w0+wl—2] =0

* In order for this to be true for any third degree polynomial (i.e. all arbitrary coefficients,
A, B, C, D), we must have:

3 3 _
wx, +wix; =0
2
2 2 —
WX + WX — 3 = 0
wyx,+wix; =0

w,+w; =2 =0
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* 4 nonlinear equations — 4 unknowns

w,=1 and w, =1

x0=—£ andx1=+£

» All polynomials of degree 3 or less will be exactly integrated with a Gauss-Legendre 2
point formula.
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Gauss Legendre Formulae

+1 N
I= jf(x)dx = Y w. fi+E
-1 i=0
X;, Exact for
N N+1 . w; polynomials of
i =0,N degree
0 1 0 2 1
2 —f N ﬁ 1,1 3
3’ 3
2 3 -0.774597, 0, 0.5555, 0.8889, 5
+0.774597 0.5555
N N+1 2N+ 1
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Xis

Exact for

N+1 w; polynomials of
i =0,N degree
4 -0.86113631 0.34785485 7
-0.33998104 0.65214515
0.33998104 0.65214515
0.86113631 0.34785485
5 -0.90617985 0.23692689 9
-0.53846931 0.47862867
0.00000000 0.56888889
0.53846931 0.47862867
0.90617985 0.23692689
6 -0.93246951 0.17132449 11
-0.66120939 0.36076157
-0.23861919 0.46791393
0.23861919 0.46791393
0.66120939 0.36076157
0.93246951 0.17132449
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* Notes

* N+ 1 = the number of integration points

e Integration points are symmetrical on [-1, +1]

* Formulae can be applied on any interval using a coordinate transformation

* N+ 1 integration points — will integrate polynomials of up to degree 2N + 1 exactly.

e Recall that Newton Cotes — N+ 1 integration points only integrates an
N™/N + 1" degree polynomial exactly depending on N being odd or even.

* For Gauss-Legendre integration, we allowed both weights and integration point
locations to vary to match an integral exactly = more d.o.f. = allows you to
match a higher degree polynomial!

* An alternative way of looking at Gauss-Legendre integration formulae is that we
use Hermite interpolation instead of Lagrange interpolation! (How can this be
since Hermite interpolation involves derivatives — let’s examine this!)
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Derivation of Gauss Quadrature by Integrating Hermite Interpolating Functions

Hermite interpolation formulae

e Hermite interpolation which matches the function and the first derivative at N + 1 inter-

polation points is expressed as:

N N

gx) = Y ou(0fi+ Y B0

i:() 1:0

D ST/ Y A £ A Y S
@ @ @ @ L L L
0 1 2 3 4 5 N
XO )C] .XZ .X3 X4 X5 XN

e It can be shown that in general for non-equispaced points

o(x) = t;(x) () ;(x) i =0,N

B;(x) = s;(x)ly(x).y(x) i =0,N
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where

P(x) = (x =X, ) (X —xp) - (X = xy)

pP
) = — 2 i = 0N

(x=x)p )

() =1-(r-x,) 2 1)

s;(x)=(x—x;)
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Example of defining a cubic Hermite interpolating function

e Derive Hermite interpolating functions for 2 interpolation points located at —1 and + 1
for the interval [-1, + 1].

(1)

1J1
I I—> X
.XOZ—I XI =+]/

N+1 =2 points = N =1

 Establish p,(x)
px) = (r-x)(x-x) =

PO = (x-x,) + (x=x))
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 Establish /,(x)

p(x)
lnx) = : ®)
(x—xl-)[pl (xi)]
L (x) = (x=x,)(x—x;)
i T o) —x,) + (5, — xp)]
efeti =0
L () = (x—x,)(x-x;)
01 = (x=x,)[0+(x,—x;)]
X —X
lor (%) = X,— X,
* Substitute in x, = -1 and x; = +1

[, (x) = %(1 —X)
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efleti =1

I () = (x—x,)(x—x;)
= (x=x)[(x;=x,)+0]

e Substitute in values for x,, x,

l(x) = %(1 + X)

* Taking derivatives

(1 1
[t = =3
(1) 1
{0 = T2
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* Establish 7,(x)
(1)
f(x) = 1- (x—xo)ZZO1 (x,) =

1,(x) = 1-(x+ 1)(2)(— 9 =

t(x) =2+x
_ (1)
1 (x) = T=(x—xy) 2 4,°(x)) =

t(x) = 1—(x—1)(2-9 -

f(x) =2-x

* Establish s;(x)
s,(x) = x+1

si(x) =x-1
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* Establish o (x)

o, (x) =t,(0),;x),(x) =

o (x) = (2+x)%(1—x)%(1—x) -

4

[

o (x) = %(Z—Sx +x3)

oy (x) = () (x) =

oy (x) = (2—x)%(1 +x)%(1 +x) =

oy (x) = }‘(2 +3x —x3)
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* Establish 8.(x)

Bo(x) = 5,(0),1(X) ], (x) =

B,(x) (x+1)%(1—x)%(l—x) =

B,(x) = ‘-1‘(1 —x—-x2+x3)

Bl(x)

si () (x) =

1 1
Bi(x) = (x—1)§(1+x)§(1+x) =
Bi(x) = ‘—1‘(—1—x +x2 +x3)

* In general

g(x) = 0,(¥) f, + 1y () fiy + By() [ +By(x) D
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(1)
Olfx) o (x)
i
(04
Op(x) 1) Og ; )(x)
} > X > X
-1 +1 -1 /+1
(1)
O (x)
1
Bix) Bt

—1 VI —1 ~ +1

Bi(x)

» These functions satisfy the constraints

o, (x;) = 9 o (x) =0
Bi(xp) =0 B;(”(xj) =3
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Gauss-Legendre Quadrature by integrating Hermite interpolating polynomials

+1 N

I= jf(x)dx = S w fi+E

-1 i=0
* Notes
* Use [-1, +1] without loss of generality = we can always transform the interval.

* Approximation for [ is exact for 2N + 1 degree polynomials

* We can derive all Gauss-Legendre quadrature formulae by approximating f(x) with an

2N + 1" degree Hermite interpolating function using N specially selected integration/
interpolation points.

+1
I = jg(x)dx+E
-1
where

N N

g = S a()fi+ Y B

l=0 ],:0
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e Thus
+1[ N N
I=[| Y ofi+ Y Bx)f; |dx+E
-1Li=0 i=0
-
I= ZA fi+ ZB AVLE
i=0
where
+ 1 + 1

A = Iai(x)dx and B, = jBi(x)dx

1

-1 -1

e Furthermore we can show that

+1

PN+1(X) 2N+

E = + H.O.T.
j(2N+2)'f( OT. Jdx
_1
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* Note that we are assuming Taylor series expansions about x, and using higher order
terms in the expansion.

e Therefore E = 0 for any polynomial of degree 2N + 1 or less!

 The problem that we encounter is that the integration formula as it now stands in
general requires us to know both functional and first derivative values at the nodes!

* Let us select x,, x;, x,, ...x, such that

+1
IBi(x)dx =0 i=0N =
-1
+1

[ s lyy(x)dx =0 i=0,N =
-1

+1
j(x—x,.) pN(Jg [y(x)dx =0 i=0,N =
1 (x_xi)PN(xi)
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+1

1 .
—— | PN@liy()dx =0 i = 0N
Py X))
py(x) = polynomial of degree N + 1

[.y(x) = polynomial of degree N
 Therefore we require p,(x) to be orthogonal on [-1, +1] to all polynomials of degree N

or less = any multiple of Legendre-Polynomials will satisty this.

e [et

IN+I[(N + 1)1]2
2N+ 1)]!

p]v(x) = PN+1(X)

where
Py(X) = (x=x,)(x=x)(x=x,)...(x = xp)

P, ., = the Legendre polynomial of degree N + 1

ON+I[(N +1)!]2
2N+ 1)]!

is required to normalize the leading coefficient of P, . (x)
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* What have we done by defining p,(x) in this way = we have selected the integration/

interpolation/data points x,, x,, ...x, to be the roots of P, , ,(x).

 In general

2 _1\n
P (x) = I d'(x<-1)
2"n! dx"
P (x) =1
Pi(x) = x

P,(x) = %(3x2— 1)

Pi(x) = %(5x3 —3x)
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e So far we have established

* Selecting p,(x) to be proportional to the Legendre Polynomial of degree N+1 =
this satisfies the orthogonality condition which will lead to:

+1

j B.(x)dx = 0

-1

As a result ];“) terms will not appear in the Gauss-Legendre integration formula.

* If we select py(x) to be the Legendre Polynomial of degree N+ 1 = the roots of

that polynomial will represent the interpolating/integration/data points since
py(x) = (x—x,)(x—x,)...(x—xy) has been set equal to CP,,, (x)

* Now we must find the weights of the integration formula. Note that A; will represent the
weights!

+1

A.= j o (x)dx =

1

-1
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+1

A, = j () 1y (x) Ly(x)dx
-1

where
() = 1—(x=x) 2 )

pN(x)

Lin(x) =
T e

py(x) = (x=x,)...(x=xy)

and where x , ..., x, are the roofs of the Legendre polynomial of degree N+ 1 or

ON+I[(N + 1)!]2
2N+ D!

pn(x) = Py,(x)
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Two point Gauss-Legendre integration

Develop a 2 point Gauss-Legendre integration formula for [-1, +1]. Let

1 1

gx) = Y o+ Y B

i=0 i=0
2(x) = a,(0f, + 0, (x)f; + By () + By (A

e Thus

+1
I = jg(x)dx+E =

-1

+1 +1 +1 +1
1= [o,f,dc+ [oy(0fidx+ [ B,(0f dx+ [Bin)fidx =
-1 -1 -1 -1
+1 +1 +1 +1
I=f, [ o,de+f, [ oay(yde+f,) [ B(x)dx+£" [ B (x)dx
1 1 -1 -1
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Step 1 - Establish interpolating points

* Interpolation points will be the roots of the Legendre Polynomial of order 2.

P,(x) = %(3x2—1) -

%(3x2—1) =0 =

3x2 =1 =

1
xO,lziJ; =

X1 = 1057735
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» Checking these roots

1 d?(x%2-1)
P20 = 733, ()iixz - s
Py(x) = %j—(x“ 2x2+1) =

x2
Py(x) = %(12)62—4) =

— 1 2
Py(x) = §(3x -1)
22(2!)2

pi(x) = (252))), Py(x) =
Pl = 5 0D =
pi() = 223
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* From formula which defines p,(x) using the integration points
_ 1 n_ , 1
p(x) = (x+£)(x—£) = X753

Step 2 - Establish the coefficients of the derivative terms in the integration formula
* Let’s demonstrate that with the roots x, | = +0.57735 we will satisty

+1 +1

jBO(x)dx =0 and jﬁl(x)dx =0
-1 -1

e First develop B,(x) and p,(x) by developing pl(x),p(ll)(x), l,1(x), 1;(x),
s,(x) and s,(x)
pi(x) = (x—x,)(x—x;)

)

P\x) = (x—x,)+(x—x))
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P1(x) .
= O, 1 =
(x— xj)pl(l)(xj)

ljl(-x) =

(x—x,)(x—x;)

[1(x) = (=), —x,) + (¥, — x7)]

(x—x,)(x—x;)

lol(x) = (x_xo)[xo_x0+x0_x1] -

X=X

lol(x) =

X, — X1

(x—x,)(x—x;)

= e )

xX—X,

hx) = X —X
0
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s,(x) = x—x,

s1(x) = x—x,

* Now we can establish _(x)

Bo(x) = So(x) lol(x) 101(x) -

B,(x) = (x—x,)( —) (L)

Xo =X Mo =Xy
: 1 1
* Noting that x, = — % =3

e
S

| W
1
=
(98]
|
o=
—

[\)

|
W

—

+
7\
QO] =
N

W
~~
[\]
L 1

B,(») = 3
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 Similarly for B,(x)

Bl(x) = Sl(x) lll(x) lll(x) -

(x-x,) (x—x,)

(x,—x,) (x,-x,)

B1(x) = (x—xl)

+ Substituting x, = - @ v = @

B1(x) = 3 =
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+1
* Now we can develop I B, (x)dx
-1
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+1
. DevelopJ' 161(x)dx
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* Now our integration formula reduces to:
+1 +1
I = foj 10c0(x)dx +f1j 1oc1(x)dx =

I =Af),+Af

where

+1 +1
A, sj_l o, (x)dx and A, sj_l ot (x)dx

Step 3 - Develop A, A,

 Establish o (x)

o, (x) =1,(x)1,(x)1,(x) =

o, (x) = [1-(x—x)20 e ) 1L (0L (x) =

p. 16.37
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+1
. DevelopJ' o, (x)dx
-1

J.j a,(x)dx = J.j [gﬁ(x3—x+2(%)3/z)}dx =
jj o, (x)dx = 3[3[);—%2”@3/2)6]1 _

[ o= 18G5 +25) ) -(-320) )] =

J.joco(x)dx = 2“/3(4£ %) =
HOL x)dx =1 =

[ o,

-1

A =1
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+1
 Similarly we can show that A, = j o4 (x)dx =1
-1

e Thus we have established the two point Gauss Quadrature rule

+1
I = I_lf(x)dx =w,f,+wf;

where x, = - £ and x;, = + £ are the integration pointsand w, = w, = 1

* We note that this integration rule was established by defining a Hermite cubic interpo-
lating function and defining the integration points x_, x; such that

jHBO(x)dx =0 and jHBl(x)dx =0
-1 -1

» Therefore the functional derivative values drop out of the Gauss Legendre integra-
tion formula!
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