LECTURE 16

GAUSS QUADRATURE

• In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes).

$$\int_{S} f(x)dx = h[w'_{o} f_{o} + w'_{1} f_{1} + \dots + w'_{N} f_{N}] + E$$

$$x_{S}$$

• Note that for Newton-Cotes formulae only the weighting coefficients w_i were unknown and the x_i were fixed

- However the number of and placement of the integration points influences the accuracy of the Newton-Cotes formulae:
 - N even $\rightarrow N^{th}$ degree interpolation function exactly integrates an $N+1^{th}$ degree polynomial \rightarrow This is due to the placement of one of the data points.
 - $N \text{ odd} \rightarrow N^{th}$ degree interpolation function exactly integrates an N^{th} degree polynomial.
- Concept: Let's allow the placement of the integration points to vary such that we further increase the degree of the polynomial we can integrate exactly for a given number of integration points.
- In fact we can integrate an 2N + 1 degree polynomial exactly with only N + 1 integration points

• Assume that for Gauss Quadrature the form of the integration rule is

$$\int_{x_S}^{x_E} f(x) dx = [w_o f_o + w_1 f_1 + \dots + w_N f_N] + E$$

- In *deriving* (not applying) these integration formulae
 - Location of the integration points, x_i i = O, N are unknown
 - Integration formulae weights, w_i i = O, N are unknown
- 2(N+1) unknowns \rightarrow we will be able to exactly integrate any 2N+1 degree polynomial!

Derivation of Gauss Quadrature by Integrating Exact Polynomials and Matching

Derive 1 point Gauss-Quadrature

- 2 unknowns w_o , x_o which will exactly integrate any linear function
- Let the *general* polynomial be

$$f(x) = Ax + B$$

where the coefficients A, B can equal any value

• Also consider the integration interval to be [-1, +1] such that $x_S = -1$ and $x_E = +1$ (no loss in generality since we can always transform coordinates).

$$\int_{-1}^{+1} f(x)dx = w_o f(x_o)$$

• Substituting in the form of f(x)

$$\int_{-1}^{+1} (Ax + B)dx = w_o(Ax_o + B) \implies$$

$$\left[A\frac{x^2}{2} + Bx\right]_{-1}^{+1} = w_o(Ax_o + B) \Rightarrow$$

$$A(0) + B(2) = A(x_o w_o) + B(w_o)$$

• In order for this to be true for <u>any</u> 1st degree polynomial (i.e. any A and B).

$$\begin{pmatrix} 0 = x_o w_o \\ 2 = w_o \end{pmatrix}$$

• Therefore $x_0 = 0$, $w_0 = 2$ for 1 point (N = 1) Gauss Quadrature.

• We can integrate exactly with only 1 point for a linear function while for Newton-Cotes we needed two points!

Derive a 2 point Gauss Quadrature Formula

• The general form of the integration formula is

$$I = w_o f_o + w_1 f_1$$

- w_o , x_o , w_1 , x_1 are all unknowns
- 4 unknowns ⇒ we can fit a 3rd degree polynomial exactly

$$f(x) = Ax^3 + Bx^2 + Cx + D$$

• Substituting in for f(x) into the general form of the integration rule

$$\int_{-1}^{+1} f(x)dx = w_o f(x_o) + w_1 f(x_1)$$

 \Rightarrow

$$\int_{-1}^{+1} [Ax^{3} + Bx^{2} + Cx + D] dx = w_{o}[Ax_{o}^{3} + Bx_{o}^{2} + Cx_{o} + D] + w_{1}[Ax_{1}^{3} + Bx_{1}^{2} + Cx_{1} + D]$$

$$\Rightarrow$$

$$\left[\frac{Ax^{4}}{4} + \frac{Bx^{3}}{3} + \frac{Cx^{2}}{2} + Dx\right]_{-1}^{+1} = w_{o}(Ax_{o}^{3} + Bx_{o}^{2} + Cx_{o} + D) + w_{1}(Ax_{1}^{3} + Bx_{1}^{2} + Cx_{1} + D)$$

$$\Rightarrow$$

$$A[w_{o}x_{o}^{3} + w_{1}x_{1}^{3}] + B[w_{o}x_{o}^{2} + w_{1}x_{1}^{2} - \frac{2}{3}] + C[w_{o}x_{o} + w_{1}x_{1}] + D[w_{o} + w_{1} - 2] = 0$$

• In order for this to be true for *any* third degree polynomial (i.e. all arbitrary coefficients, A, B, C, D), we must have:

$$w_{o}x_{o}^{3} + w_{1}x_{1}^{3} = 0$$

$$w_{o}x_{o}^{2} + w_{1}x_{1}^{2} - \frac{2}{3} = 0$$

$$w_{o}x_{o} + w_{1}x_{1} = 0$$

$$w_{o} + w_{1} - 2 = 0$$

• 4 nonlinear equations \rightarrow 4 unknowns

$$w_0 = 1$$
 and $w_1 = 1$

$$x_o = -\sqrt{\frac{1}{3}}$$
 and $x_1 = +\sqrt{\frac{1}{3}}$

• All polynomials of degree 3 or less will be *exactly* integrated with a Gauss-Legendre 2 point formula.

Gauss Legendre Formulae

$$I = \int_{-1}^{+1} f(x)dx = \sum_{i=0}^{N} w_i f_i + E$$

N	N + 1	i = 0, N	w_i	Exact for polynomials of degree
0	1	0	2	1
1	2	$-\sqrt{\frac{1}{3}},+\sqrt{\frac{1}{3}}$	1, 1	3
2	3	-0.774597, 0, +0.774597	0.5555, 0.8889, 0.5555	5
N	<i>N</i> + 1			2N + 1

N	N+1	$x_i,$ $i = 0, N$	w_i	Exact for polynomials of degree
3	4	-0.86113631	0.34785485	7
		-0.33998104	0.65214515	
		0.33998104	0.65214515	
		0.86113631	0.34785485	
4	5	-0.90617985	0.23692689	9
		-0.53846931	0.47862867	
		0.00000000	0.56888889	
		0.53846931	0.47862867	
		0.90617985	0.23692689	
5	6	-0.93246951	0.17132449	11
		-0.66120939	0.36076157	
		-0.23861919	0.46791393	
		0.23861919	0.46791393	
		0.66120939	0.36076157	
		0.93246951	0.17132449	

Notes

- N + 1 = the number of integration points
- Integration points are symmetrical on [-1, +1]
- Formulae can be applied on any interval using a coordinate transformation
- N + 1 integration points \rightarrow will integrate polynomials of up to degree 2N + 1 exactly.
 - Recall that Newton Cotes $\rightarrow N+1$ integration points only integrates an $N^{th}/N+1^{th}$ degree polynomial exactly depending on N being odd or even.
 - For Gauss-Legendre integration, we allowed both weights and integration point locations to vary to match an integral exactly ⇒ more d.o.f. ⇒ allows you to match a higher degree polynomial!
 - An alternative way of looking at Gauss-Legendre integration formulae is that we use Hermite interpolation instead of Lagrange interpolation! (How can this be since Hermite interpolation involves derivatives → let's examine this!)

Derivation of Gauss Quadrature by Integrating Hermite Interpolating Functions

Hermite interpolation formulae

• Hermite interpolation which *matches* the function and the first derivative at N + 1 interpolation points is expressed as:

$$g(x) = \sum_{i=0}^{N} \alpha_i(x) f_i + \sum_{i=0}^{N} \beta_i(x) f_i^{(1)}$$

• It can be shown that in general for non-equispaced points

$$\alpha_i(x) = t_i(x)l_{iN}(x)l_{iN}(x)$$
 $i = 0, N$

$$\beta_i(x) = s_i(x)l_{iN}(x)l_{iN}(x) \qquad i = 0, N$$

where

$$p_N(x) \equiv (x - x_o)(x - x_1) \cdots (x - x_N)$$

$$l_{iN}(x) \equiv \frac{p_N(x)}{(x - x_i)p_N^{(1)}(x_i)}$$
 $i = 0, N$

$$t_i(x) \equiv 1 - (x - x_i) \ 2 \ l_{iN}^{(1)}(x_i)$$

$$s_i(x) \equiv (x - x_i)$$

Example of defining a cubic Hermite interpolating function

• Derive Hermite interpolating functions for 2 interpolation points located at -1 and +1 for the interval [-1, +1].

$$N+1 = 2$$
 points $\Rightarrow N = 1$

• Establish $p_N(x)$

$$p_1(x) = (x - x_0)(x - x_1) \Rightarrow$$

$$p_1(x) = (x - x_0)(x - x_1) \Rightarrow$$

$$p_1^{(1)}(x) = (x - x_0) + (x - x_1)$$

• Establish $l_{iN}(x)$

$$l_{i1}(x) = \frac{p_1(x)}{(x - x_i)[p_1^{(1)}(x_i)]}$$

$$l_{i1}(x) = \frac{(x - x_o)(x - x_1)}{(x - x_i)[(x_i - x_o) + (x_i - x_1)]}$$

• Let i = 0

$$l_{o1}(x) = \frac{(x - x_o)(x - x_1)}{(x - x_o)[0 + (x_o - x_1)]} \Rightarrow$$

$$l_{o1}(x) = \frac{x - x_1}{x_o - x_1}$$

• Substitute in $x_o = -1$ and $x_1 = +1$

$$l_{o1}(x) = \frac{1}{2}(1-x)$$

• Let i = 1

$$l_{11}(x) = \frac{(x - x_o)(x - x_1)}{(x - x_1)[(x_1 - x_o) + 0]}$$

• Substitute in values for x_o , x_1

$$l_{11}(x) = \frac{1}{2}(1+x)$$

• Taking derivatives

$$l_{o1}^{(1)}(x) = -\frac{1}{2}$$

$$l_{11}^{(1)}(x) = +\frac{1}{2}$$

• Establish $t_i(x)$

$$t_{o}(x) = 1 - (x - x_{o}) 2 l_{o1}^{(1)}(x_{o}) \qquad \Rightarrow$$

$$t_{o}(x) = 1 - (x + 1)(2) \left(-\frac{1}{2}\right) \qquad \Rightarrow$$

$$t_{o}(x) = 2 + x$$

$$t_{1}(x) = 1 - (x - x_{1}) 2 l_{11}^{(1)}(x_{1}) \qquad \Rightarrow$$

$$t_{1}(x) = 1 - (x - 1) \left(2 \cdot \frac{1}{2}\right) \qquad \Rightarrow$$

$$t_{1}(x) = 2 - x$$

• Establish $s_i(x)$

$$s_o(x) = x + 1$$

$$s_1(x) = x - 1$$

• Establish $\alpha_i(x)$

$$\alpha_{o}(x) = t_{o}(x)l_{o1}(x)l_{o1}(x) \Rightarrow$$

$$\alpha_{o}(x) = (2+x)\frac{1}{2}(1-x)\frac{1}{2}(1-x) \Rightarrow$$

$$\alpha_{o}(x) = \frac{1}{4}(2-3x+x^{3})$$

$$\alpha_{1}(x) = t_{1}(x)l_{11}(x)l_{11}(x) \Rightarrow$$

$$\alpha_{1}(x) = (2-x)\frac{1}{2}(1+x)\frac{1}{2}(1+x) \Rightarrow$$

$$\alpha_{1}(x) = \frac{1}{4}(2+3x-x^{3})$$

• Establish $\beta_i(x)$

$$\beta_{o}(x) = s_{o}(x)l_{o1}(x)l_{o1}(x) \Rightarrow$$

$$\beta_{o}(x) = (x+1)\frac{1}{2}(1-x)\frac{1}{2}(1-x) \Rightarrow$$

$$\beta_{o}(x) = \frac{1}{4}(1-x-x^{2}+x^{3})$$

$$\beta_{1}(x) = s_{1}(x)l_{11}(x)l_{11}(x) \Rightarrow$$

$$\beta_{1}(x) = (x-1)\frac{1}{2}(1+x)\frac{1}{2}(1+x) \Rightarrow$$

$$\beta_{1}(x) = \frac{1}{4}(-1-x+x^{2}+x^{3})$$

• In general

$$g(x) = \alpha_o(x) f_o + \alpha_1(x) f_1 + \beta_o(x) f_o^{(1)} + \beta_1(x) f_1^{(1)}$$

• These functions satisfy the constraints

$$\alpha_i(x_j) = \delta_{ij}$$

$$\beta_i(x_j) = 0$$

$$\beta_i(x_i) = 0$$

$$\alpha_i^{(1)}(x_i) = 0$$

$$\beta_i^{(1)}(x_i) = \delta_i$$

Gauss-Legendre Quadrature by integrating Hermite interpolating polynomials

$$I = \int_{-1}^{+1} f(x)dx = \sum_{i=0}^{N} w_i f_i + E$$

- Notes
 - Use [-1, +1] without loss of generality \Rightarrow we can always transform the interval.
 - Approximation for I is exact for 2N + 1 degree polynomials
- We can derive all Gauss-Legendre quadrature formulae by approximating f(x) with an 2N + 1th degree Hermite interpolating function *using* N *specially selected* integration/interpolation points.

$$I = \int_{-1}^{+1} g(x)dx + E$$

where

$$g(x) = \sum_{i=0}^{N} \alpha_{i}(x) f_{i} + \sum_{i=0}^{N} \beta_{i}(x) f_{i}^{(1)}$$

• Thus

$$I = \int_{-1}^{+1} \left[\sum_{i=0}^{N} \alpha_i(x) f_i + \sum_{i=0}^{N} \beta_i(x) f_i^{(1)} \right] dx + E$$

$$\Rightarrow$$

$$I = \sum_{i=0}^{N} A_i f_i + \sum_{i=0}^{N} B_i f_i^{(1)} + E$$

where

$$A_i \equiv \int_{-1}^{+1} \alpha_i(x) dx$$
 and $B_i \equiv \int_{-1}^{+1} \beta_i(x) dx$

• Furthermore we can show that

$$E = \int_{-1}^{+1} \left[\frac{p_{N+1}^2(x)}{(2N+2)!} f^{(2N+2)}(x_o) + \text{H.O.T.} \right] dx$$

- Note that we are assuming Taylor series expansions about x_o and using higher order terms in the expansion.
 - Therefore E = 0 for any polynomial of degree 2N + 1 or less!
- The problem that we encounter is that the integration formula as it now stands *in general* requires us to know both functional and first derivative values at the nodes!
- Let us select $x_0, x_1, x_2, ...x_N$ such that

$$B_{i} = 0 \quad i = 0, N \implies$$

$$\int_{-1}^{+1} \beta_{i}(x)dx = 0 \quad i = 0, N \implies$$

$$\int_{-1}^{+1} s_{i}(x)l_{iN}(x)l_{iN}(x)dx = 0 \quad i = 0, N \implies$$

$$\int_{-1}^{+1} (x-x_{i})\frac{p_{N}(x)}{(x-x_{i})p_{N}^{(1)}(x_{i})} l_{iN}(x)dx = 0 \quad i = 0, N \implies$$

$$\frac{1}{p_N^{(1)}(x_i)} \int_{-1}^{+1} p_N(x) l_{iN}(x) dx = 0 \quad i = 0, N$$

 $p_N(x) \Rightarrow \text{polynomial of degree } N+1$

 $l_{iN}(x) \Rightarrow \text{polynomial of degree } N$

- Therefore we require $p_N(x)$ to be orthogonal on [-1, +1] to **all** polynomials of degree N or less \Rightarrow any multiple of Legendre-Polynomials will satisfy this.
- Let

$$p_N(x) = \frac{2^{N+1}[(N+1)!]^2}{[2(N+1)]!} P_{N+1}(x)$$

where

$$p_N(x) = (x - x_0)(x - x_1)(x - x_2)...(x - x_N)$$

 P_{N+1} = the Legendre polynomial of degree N+1

 $\frac{2^{N+1}[(N+1)!]^2}{[2(N+1)]!}$ is required to normalize the leading coefficient of $P_{N+1}(x)$

- What have we done by defining $p_N(x)$ in this way \Rightarrow we have selected the integration/interpolation/data points $x_o, x_1, ...x_N$ to be the **roots** of $P_{N+1}(x)$.
- In general

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n (x^2 - 1)^n}{dx^n}$$

$$P_o(x) = 1$$

$$P_1(x) = x$$

$$P_2(x) = \frac{1}{2}(3x^2 - 1)$$

$$P_3(x) = \frac{1}{2}(5x^3 - 3x)$$

.

- So far we have established
 - Selecting $p_N(x)$ to be proportional to the Legendre Polynomial of degree $N+1 \Rightarrow$ this satisfies the orthogonality condition which will lead to:

$$\int_{-1}^{+1} \beta_i(x) dx = 0$$

As a result $f_i^{(1)}$ terms will **not** appear in the Gauss-Legendre integration formula.

- If we select $p_N(x)$ to be the Legendre Polynomial of degree $N+1 \Rightarrow$ the roots of that polynomial will represent the interpolating/integration/data points since $p_N(x) = (x-x_o)(x-x_1)...(x-x_N)$ has been set equal to $CP_{N+1}(x)$
- Now we must find the weights of the integration formula. Note that *A*_i will represent the weights!

$$A_i \equiv \int_{-1}^{+1} \alpha_i(x) dx \quad \Rightarrow \quad$$

$$A_{i} = \int_{-1}^{+1} t_{i}(x) \ l_{iN}(x) \ l_{iN}(x) dx$$

where

$$t_i(x) = 1 - (x - x_i) \ 2 \ l_{iN}^{(1)}(x_i)$$

$$l_{iN}(x) = \frac{p_N(x)}{(x - x_i)p_N^{(1)}(x_i)}$$

$$p_N(x) = (x - x_o) \dots (x - x_N)$$

and where $x_0, ..., x_N$ are the **roots** of the Legendre polynomial of degree N + 1 or

$$p_N(x) = \frac{2^{N+1}[(N+1)!]^2}{[2(N+1)]!} P_{N+1}(x)$$

Two point Gauss-Legendre integration

Develop a 2 point Gauss-Legendre integration formula for [-1, +1]. Let

$$g(x) = \sum_{i=0}^{1} \alpha_i(x) f_i + \sum_{i=0}^{1} \beta_i(x) f_i^{(1)}$$

$$g(x) = \alpha_o(x)f_o + \alpha_1(x)f_1 + \beta_o(x)f_o^{(1)} + \beta_1(x)f_1^{(1)}$$

• Thus

$$I = \int_{-1}^{+1} g(x)dx + E \implies$$

$$I = \int_{-1}^{+1} \alpha_{o}(x)f_{o}dx + \int_{-1}^{+1} \alpha_{1}(x)f_{1}dx + \int_{-1}^{+1} \beta_{o}(x)f_{o}^{(1)}dx + \int_{-1}^{+1} \beta_{1}(x)f_{1}^{(1)}dx \implies$$

$$I = \int_{0}^{+1} \alpha_{o}(x)f_{o}dx + \int_{-1}^{+1} \alpha_{1}(x)f_{1}dx + \int_{0}^{+1} \beta_{o}(x)f_{o}^{(1)}dx + \int_{-1}^{+1} \beta_{1}(x)f_{1}^{(1)}dx \implies$$

$$I = \int_{0}^{+1} \alpha_{o}(x)dx + \int_{1}^{+1} \alpha_{1}(x)dx + \int_{0}^{+1} \beta_{o}(x)dx + \int_{1}^{+1} \beta_{1}(x)dx + \int_{0}^{+1} \beta_{1}(x)dx + \int_{0}^{$$

Step 1 - Establish interpolating points

• Interpolation points will be the roots of the Legendre Polynomial of order 2.

$$P_2(x) = \frac{1}{2}(3x^2 - 1) \Rightarrow$$

$$\frac{1}{2}(3x^2 - 1) = 0 \Rightarrow$$

$$3x^2 = 1 \Rightarrow$$

$$x^2 = \frac{1}{3} \Rightarrow$$

$$x_{0, 1} = \pm \sqrt{\frac{1}{3}} \implies$$

$$x_{0, 1} = \pm 0.57735$$

• Checking these roots

$$P_{2}(x) = \frac{1}{2^{2}2!} \frac{d^{2}(x^{2}-1)^{2}}{dx^{2}} \Rightarrow$$

$$P_{2}(x) = \frac{1}{8} \frac{d^{2}}{dx^{2}} (x^{4}-2x^{2}+1) \Rightarrow$$

$$P_{2}(x) = \frac{1}{8} (12x^{2}-4) \Rightarrow$$

$$P_{2}(x) = \frac{1}{2} (3x^{2}-1)$$

$$p_{1}(x) = \frac{2^{2}(2!)^{2}}{(2(2))!} P_{2}(x) \Rightarrow$$

$$p_{1}(x) = \frac{4\cdot 4}{4\cdot 3\cdot 2} \cdot \frac{1}{2} (3x^{2}-1) \Rightarrow$$

$$p_{1}(x) = x^{2} - \frac{1}{3}$$

• From formula which defines $p_1(x)$ using the integration points

$$p_1(x) = \left(x + \sqrt{\frac{1}{3}}\right)\left(x - \sqrt{\frac{1}{3}}\right) = x^2 - \frac{1}{3}$$

Step 2 - Establish the coefficients of the derivative terms in the integration formula

• Let's demonstrate that with the roots $x_{o, 1} = \pm 0.57735$ we will satisfy

$$\int_{-1}^{+1} \beta_o(x) dx = 0 \quad \text{and} \quad \int_{-1}^{+1} \beta_1(x) dx = 0$$

• First develop $\beta_o(x)$ and $\beta_1(x)$ by developing $p_1(x), p_1^{(1)}(x), l_{o1}(x), l_{11}(x), s_o(x)$ and $s_1(x)$

$$p_1(x) = (x - x_o)(x - x_1)$$

$$p_1^{(1)}(x) = (x - x_0) + (x - x_1)$$

$$l_{j1}(x) = \frac{p_1(x)}{(x - x_j)p_1^{(1)}(x_j)}$$
 $j = 0, 1 \implies$

$$l_{j1}(x) = \frac{(x - x_o)(x - x_1)}{(x - x_j)[(x_j - x_o) + (x_j - x_1)]}$$

$$l_{o1}(x) = \frac{(x - x_o)(x - x_1)}{(x - x_o)[x_o - x_o + x_o - x_1]} \Rightarrow$$

$$l_{o1}(x) = \frac{x - x_1}{x_o - x_1}$$

$$l_{11}(x) = \frac{(x - x_0)(x - x_1)}{(x - x_1)[(x_1 - x_0) + (x_1 - x_1)]} \Rightarrow$$

$$l_{11}(x) = \frac{x - x_o}{x_1 - x_o}$$

$$s_o(x) = x - x_o$$

$$s_1(x) = x - x_1$$

• Now we can establish $\beta_o(x)$

$$\beta_o(x) = s_o(x) l_{o1}(x) l_{o1}(x) \Rightarrow$$

$$\beta_o(x) = (x - x_o) \left(\frac{x - x_1}{x_o - x_1} \right) \left(\frac{x - x_1}{x_o - x_1} \right)$$

• Noting that $x_o = -\sqrt{\frac{1}{3}}, x_1 = \sqrt{\frac{1}{3}}$

$$\beta_o(x) = \left(x + \sqrt{\frac{1}{3}}\right) \frac{\left(x - \sqrt{\frac{1}{3}}\right)\left(x - \sqrt{\frac{1}{3}}\right)}{\left(-\sqrt{\frac{1}{3}} - \sqrt{\frac{1}{3}}\right)^2} \Rightarrow$$

$$\beta_o(x) = \frac{3}{4} \left[x^3 - \sqrt{\frac{1}{3}} x^2 - \frac{1}{3} x + \left(\frac{1}{3}\right)^{3/2} \right]$$

• Similarly for $\beta_1(x)$

$$\beta_1(x) = s_1(x) l_{11}(x) l_{11}(x) \Rightarrow$$

$$\beta_1(x) = (x - x_1) \frac{(x - x_o)}{(x_1 - x_o)} \cdot \frac{(x - x_o)}{(x_1 - x_o)}$$

• Substituting $x_o = -\sqrt{\frac{1}{3}}$, $x_1 = \sqrt{\frac{1}{3}}$

$$\beta_1(x) = \frac{\left(x - \sqrt{\frac{1}{3}}\right)\left(x + \sqrt{\frac{1}{3}}\right)\left(x + \sqrt{\frac{1}{3}}\right)}{\left(\sqrt{\frac{1}{3}} + \sqrt{\frac{1}{3}}\right)^2} \Rightarrow$$

$$\beta_1(x) = \frac{3}{4} \left[x^3 + \sqrt{\frac{1}{3}} x^2 - \frac{1}{3} x - \left(\frac{1}{3}\right)^{3/2} \right]$$

• Now we can develop $\int_{-1}^{+1} \beta_o(x) dx$

$$\int_{-1}^{+1} \beta_o(x) dx = \int_{-1}^{+1} \frac{3}{4} \left[x^3 - \sqrt{\frac{1}{3}} x^2 - \frac{1}{3} x + \left(\frac{1}{3}\right)^{3/2} \right] dx \implies$$

$$\int_{-1}^{+1} \beta_o(x) dx = \frac{3}{4} \left[\frac{x^4}{4} - \left(\frac{1}{3} \right)^{3/2} x^3 - \frac{1}{6} x^2 + \left(\frac{1}{3} \right)^{3/2} x \right]_{-1}^{+1} \implies$$

$$\int_{-1}^{+1} \beta_o(x) dx = \frac{3}{4} \left[\left(\frac{1}{4} - \left(\frac{1}{3} \right)^{3/2} - \frac{1}{6} + \left(\frac{1}{3} \right)^{3/2} \right) - \left(\frac{1}{4} + \left(\frac{1}{3} \right)^{3/2} - \frac{1}{6} - \left(\frac{1}{3} \right)^{3/2} \right) \right] \Rightarrow$$

$$\int_{-1}^{+1} \beta_o(x) dx = 0$$

• Develop $\int_{-1}^{+1} \beta_1(x) dx$

$$\int_{-1}^{+1} \beta_1(x) dx = \int_{-1}^{+1} \frac{3}{4} \left[x^3 + \sqrt{\frac{1}{3}} x^2 - \frac{1}{3} x - \left(\frac{1}{3}\right)^{3/2} \right] dx \implies$$

$$\int_{-1}^{+1} \beta_1(x) dx = \frac{3}{4} \left[\frac{x^4}{4} + \left(\frac{1}{3} \right)^{3/2} x^3 - \frac{1}{6} x^2 - \left(\frac{1}{3} \right)^{3/2} x \right]_{-1}^{+1} \implies$$

$$\int_{-1}^{+1} \beta_1(x) dx = \frac{3}{4} \left[\left(\frac{1}{4} + \left(\frac{1}{3} \right)^{3/2} - \frac{1}{6} - \left(\frac{1}{3} \right)^{3/2} \right) - \left(\frac{1}{4} - \left(\frac{1}{3} \right)^{3/2} - \frac{1}{6} + \left(\frac{1}{3} \right)^{3/2} \right) \right] \Rightarrow$$

$$\int_{-1}^{+1} \beta_1(x) dx = 0$$

• Now our integration formula reduces to:

$$I = f_o \int_{-1}^{+1} \alpha_o(x) dx + f_1 \int_{-1}^{+1} \alpha_1(x) dx \qquad \Rightarrow \qquad$$

$$I = A_0 f_0 + A_1 f_1$$

where

$$A_o \equiv \int_{-1}^{+1} \alpha_o(x) dx$$
 and $A_1 \equiv \int_{-1}^{+1} \alpha_1(x) dx$

Step 3 - Develop A_0 , A_1

• Establish $\alpha_o(x)$

$$\alpha_o(x) = t_o(x) l_{o1}(x) l_{o1}(x) \Rightarrow$$

$$\alpha_o(x) = [1 - (x - x_o)2l_{o1}^{(1)}(x_o)]l_{o1}(x)l_{o1}(x) \Rightarrow$$

$$\alpha_o(x) = \left\{1 - (x - x_o) \left[\frac{2}{x_o - x_1}\right]\right\} \left(\frac{x - x_1}{x_o - x_1}\right) \left(\frac{x - x_1}{x_o - x_1}\right) \quad \Rightarrow \quad$$

$$\alpha_o(x) = \left\{ 1 - \left(x + \sqrt{\frac{1}{3}} \right) \left[\frac{2}{-\sqrt{\frac{1}{3}} - \sqrt{\frac{1}{3}}} \right] \right\} \frac{\left(x - \sqrt{\frac{1}{3}} \right) \left(x - \sqrt{\frac{1}{3}} \right)}{\left(-\sqrt{\frac{1}{3}} - \sqrt{\frac{1}{3}} \right) \left(-\sqrt{\frac{1}{3}} - \sqrt{\frac{1}{3}} \right)} \Rightarrow$$

$$\alpha_o(x) = \frac{3}{4} \left\{ 1 - \left(x + \sqrt{\frac{1}{3}} \right) \left(\frac{2}{-2\sqrt{\frac{1}{3}}} \right) \right\} \left(x^2 - 2\sqrt{\frac{1}{3}}x + \frac{1}{3} \right) \Rightarrow$$

$$\alpha_o(x) = \frac{3\sqrt{3}}{4} \left\{ \frac{2}{\sqrt{3}} + x \right\} \left(x^2 - 2\sqrt{\frac{1}{3}}x + \frac{1}{3} \right) \Rightarrow$$

$$\alpha_o(x) = \frac{3}{4}\sqrt{3}\left\{x^3 - x + 2\left(\frac{1}{3}\right)^{3/2}\right\}$$

• Develop $\int_{-1}^{+1} \alpha_o(x) dx$

 $A_a = 1$

$$\int_{-1}^{+1} \alpha_o(x) dx = \int_{-1}^{+1} \left[\frac{3}{4} \sqrt{3} \left(x^3 - x + 2 \left(\frac{1}{3} \right)^{3/2} \right) \right] dx \implies$$

$$\int_{-1}^{+1} \alpha_o(x) dx = \frac{3}{4} \sqrt{3} \left[\frac{x^4}{4} - \frac{x^2}{2} + 2 \left(\frac{1}{3} \right)^{3/2} x \right]_{-1}^{+1} \implies$$

$$\int_{-1}^{+1} \alpha_o(x) dx = \frac{3}{4} \sqrt{3} \left[\left(\frac{1}{4} - \frac{1}{2} + 2 \left(\frac{1}{3} \right)^{3/2} \right) - \left(\frac{1}{4} - \frac{1}{2} - 2 \left(\frac{1}{3} \right)^{3/2} \right) \right] \implies$$

$$\int_{-1}^{+1} \alpha_o(x) dx = \frac{3}{4} \sqrt{3} \left(4 \sqrt{\frac{1}{3}} \frac{1}{3} \right) \implies$$

$$\int_{-1}^{+1} \alpha_o(x) dx = 1 \implies$$

- Similarly we can show that $A_1 = \int_{-1}^{+1} \alpha_1(x) dx = 1$
- Thus we have established the two point Gauss Quadrature rule

$$I = \int_{-1}^{+1} f(x)dx = w_o f_o + w_1 f_1$$

where $x_o = -\sqrt{\frac{1}{3}}$ and $x_1 = +\sqrt{\frac{1}{3}}$ are the integration points and $w_o = w_1 = 1$

• We note that this integration rule was established by defining a Hermite cubic interpolating function and defining the integration points x_o , x_1 such that

$$\int_{-1}^{+1} \beta_o(x) dx = 0 \quad \text{and} \quad \int_{-1}^{+1} \beta_1(x) dx = 0$$

• Therefore the functional derivative values drop out of the Gauss Legendre integration formula!