CE 30125 - Lecture 17

LECTURE 17

DIRECT SOLUTIONS TO LINEAR SYSTEMS OF ALGEBRAIC EQUATIONS

* Solve the system of equations
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* The solution is formally expressed as:

X =AB
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» Typically it is more efficient to solve for X directly without solving for A-! since
finding the inverse is an expensive (and less accurate) procedure

 Types of solution procedures
* Direct Procedures
» Exact procedures which have infinite precision (excluding roundoff error)
 Suitable when A is relatively fully populated/dense or well banded
* A predictable number of operations is required
e Indirect Procedures
e [terative procedures
» Are appropriate when A 1is
 Large and sparse but not tightly banded
* Very large (since roundoff accumulates more slowly)

 Accuracy of the solution improves as the number of iterations increases
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Cramer’s Rule - A Direct Procedure

e The components of the solution X are computed as:

where

A, 1s the matrix A with its & column replaced by vector B

|A| 1s the determinant of matrix A

e For each B vector, we must evaluate N + 1 determinants of size N where N defines the
size of the matrix A

e Evaluate a determinant as follows using the method of expansion by cofactors

N N

Al = Z ay jlcof(a; ;)] = Z a; jlcof(a; ;)]

i=1 i=1
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where
I = specified value of i

J = specified value of j

cof(a; ;) = (=1)'*I(minor(a, ;))

minor (a; ;) = determinant of the sub-matrix obtained by deleting the i row and the
J™ column

* Procedure is repeated until 2 x 2 matrices are established (which has a determinant by
definition):

1 42| _
A] = = ay 14y 9 —A4y 141 5

p-24



CE 30125 - Lecture 17

Example

e Evaluate the determinant of A

det[A] = |A]

det[A] = a, (-1)(1+1D) 42,2 43 +a, ,(-1)1+2) dy 1 A3

as , dj 3 as | 4z 3
a a
1+3)%2,1 2,2
+a1,3(—1)( +3) =
asz | dsz

det[A] = a; ((+1)(ay a3 3- a3 ,a; 3) +a; 5(=1)(ay a3 3-a3 14, 3)
+ay 3(+1)(ay a3 5 —a3 a5 ;)
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» Note that more efficient methods are available to compute the determinant of a matrix.
These methods are associated with alternative direct procedures.

 This evaluation of the determinant involves O(N)3 operations

e Number of operations for Cramers’ Rule O(N)*
2x2 system = O(2% = 0(16)
4x 4 system = O0(4%) = 0(256)
8 x 8 system = O(8%) = 0(4096)

e Cramer’s rule is not a good method for very large systems!

* If [A| = 0 and |A;|#0 = no solution! The matrix A 1is singular

*If [A| =0and|A =0 = infinite number of solutions!

p- 2.6



CE 30125 - Lecture 17

Gauss Elimination - A Direct Procedure

® Basic concept is to produce an upper or lower triangular matrix and to then use back-
ward or forward substitution to solve for the unknowns.

Example application

* Solve the system of equations

ayp 1 4ap o 4apsl|¥ 1
Ay 1 Ay o A3l |X2| = |Da
43,1 432 43 3] |3 b3

1 a2 aq 3% b
Ay 1 Ay G 3||X = |0y
431 Y932 433|143 |93
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* Now multiply row 1 by a, | and subtract from row 2

and then multiply row 1 by a; | and subtract from row 3

1 1 1
1 dy, a3l |* by
a,, dy;l|X%| = (D)

1 1 1
Vo d3p 43 3] |43 _b3_

1 1 1
1 ady, d;5||x b
" — "
] 1 1
Vo A3 d33] |43 _b 3
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* Now multiply row 2 by a'; , and subtract from row 3 to get

1 dy, aiy sl |* by
0 1 a'y 3| |x,| = b ’
_O 0 a's 3| | X3 _b 3]

* Finally divide row 3 by a"; ; (pivot element) to complete the triangulation procedure
and results in the upper triangular matrix

L oay, a5 % by
0 1 a'yal|n = |b,
0 0 1 _x3_ _bm3_

e We have triangularized the coefficient matrix simply by taking linear combinations of
the equations
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* We can very conveniently solve the upper triangularized system of equations

L ay, d;5||% b’y
0 1 a"ys|x = [0
0 0 1 _x3_ _b 3)

» We apply a backward substitution procedure to solve for the components of X
x3 — b”l3
X2 + a”z’ 3.X3 = b”2 :> x2 = b”2 - a”2’ 3.x3

' ' _ ' _ ' ' '
Xp+dy xy+ay sxy3 =0y = x; =b—dyx,-a 3x;

* We can also produce a lower triangular matrix and use a forward substitution procedure
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e Number of operations required for Gauss elimination

* Triangularization %N3
* Backward substitution %Nz

 Total number of operations for Gauss elimination equals O(N)3 versus O(N)4 for
Cramer’s rule

* Therefore we save O(N) operations as compared to Cramer’s rule

Gauss-Jordan Elimination - A Direct Procedure

* Gauss Jordan elimination is an adaptation of Gauss elimination in which both elements
above and below the pivot element are cleared to zero — the entire column except the
pivot element become zeroes

10 0 o™ |B7
0 1 0 0% _ 2"
00 1 0lx;| |6y
00 0 1|y |p7

e No backward/forward substitution is necessary
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Matrix Inversion by Gauss-Jordan Elimination

e Given A, find A-! such that

AA-1=1
1000 0 0
O 1 0 0 0 O
where I = identity matrix= |0 ¢ 1 0 0 0
O 001 0 O
0O 00O 10
00000 1

e Procedure is similar to finding the solution of AX = B except that the matrix A-!
assumes the role of vector X and matrix I serves as vector B

e Therefore we perform the same operations on A and I
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e Convert A — I through Gauss-Jordan elimination

AA-1 =1

A'A-lL =T
* However through the manipulations A — A’ = T and therefore

IA-l =T

Al =T

* The right hand side matrix, I’, has been transformed into the inverted matrix

p. 17.13



e Notes:

CE 30125 - Lecture 2 - Fall 2004

* Inverting a diagonal matrix simply involves computing reciprocals

a,; 0 O
A=10 ay 0
0 0 axp
1/a;, 0
Al =10 1/ay
0 0
AA-L =1

 Inverse of the product relationship

[AALA;]7T = AFTASTATT

p.2.14
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Gauss Elimination Type Solutions to Banded Matrices

Banded matrices
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* Have non-zero entries contained within a defined number of positions to the left and
right of the diagonal (bandwidth)

NxN Systeﬁi

IOOOOOOOO><O><><

© © © © O O O X

O X O O 0O O o o o 0—

X X 0 O O O O o o o

X 0 X X 0O O O O o o

X X O O X O O O O o

X O X O X 0 O O O o

0O X X X X O X O o0 o

O X O X X X O X O O

O O O o X X X X O o

O O O X 0 X X X O Xx

O O O o X 0 X X X 0

O O O o o X X X X

O O O o o X O

halfbandwidth
M+ 1
=== - 4
2

bandwidth M = 7

storage required = N?

p. 17.15

Compact vi Diagonal
O O 0O X X 0 X
0O O X X X O
0O 0 X X 0 X X
O X X 0 O
> X X 0 X O X O
store d 0O X X X X 0 X
as X 0O X X X 0 X
o 0 X X X X O
X 0 X X X O X
X 0O X X X O o
0O X X X X 0 O
X 0O X X O O O
B e EE—
bandwidth
M

storage required = NM
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e Notes on banded matrices

* The advantage of banded storage mode is that we avoid storing and manipulating
zero entries outside of the defined bandwidth

* Banded matrices typically result from finite difference and finite element methods
(conversion from p.d.e. — algebraic equations)

* Compact banded storage mode can still be sparse (this is particularly true for large
finite difference and finite element problems)

Savings on storage for banded matrices

o N2 for full storage versus NM for banded storage

where N = the size of the matrix and M = the bandwidth

* Examples:

N M full banded ratio
400 20 160,000 8,000 20
109 103 1012 10° 1000

p.2.16



Savings on computations for banded matrices

e Assuming a Gauss elimination procedure

O(N?3) versus O(NM?)

(full)

(banded)
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e Therefore save O(N?/M?) operations since we are not manipulating all the zeros outside

of the bands!
e Examples:
N M full banded ratio
400 20 0(6.4x107) 0(1.6x10°) 0(400)
106 10° 0(10'8) 0(1012) O(106)
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Svymmetrical banded matrices

» Substantial savings on both storage and computations if we use a banded storage mode

* Even greater savings (both storage and computations) are possible if the matrix A 1is
symmetrical

* Therefore if a;; = a; we need only store and operate on half the bandwidth in a

banded matrix (half the matrix in a full storage mode matrix)

- (M+1)2 (M +1)2

-

—_—
store
only half

p.2.18
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Alternative Compact Storage Modes for Direct Methods

e Skyline method defines an alternative compact storage procedure for symmetrical

matrices

* The skyline goes below the last non-zero element in a column

apr| ap2 0 ajy

dpp | A3 | o

azz | 934

\ ayy

o |436

symmetrical \
\ a66

ays 446

ass [dse

p. 17.19

Skyline goes above the last
non-zero element in a column
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 Store all entries between skyline and diagonal into a vector as follows:

(A1) A(3) o A9 o o
A(2) A(5) A(8) o o
A(4) A7) o A(I5)
A(6) A(11) A(14)

symmetrical
A(10) A(13)

A(12)

e Accounting procedure must be able to identify the location within the matrix of
elements stored in vector mode in A(i) = Store locations of diagonal terms in A(7)

MaxA =

p.2.20
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e Savings in storage and computation time due to the elimination of the additional zeroes

e.g. storage savings:

full symmetrical banded skyline
IEEEEE

* Program COLSOL (Bathe and Wilson) available for skyline storage solution

p.17.21
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Problems with Gauss Elimination Procedures

Inaccuracies originating from the pivot elements

* The pivot element is the diagonal element which divides the associated row

* As more pivot rows are processed, the number of times a pivot element has been modi-
fied increases.

* Sometimes a pivot element can become very small compared to the rest of the elements
in the pivot row

e Pivot element will be inaccurate due to roundoff

* When the pivot element divides the rest of the pivot row, large inaccurate numbers
result across the pivot row

* Pivot row now subtracts (after being multiplied) from all rows below the pivot row,
resulting in propagation of large errors throughout the matrix!

Partial pivoting

» Always look below the pivot element and pick the row with the largest value and switch
TOWS

p.2.22
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Complete pivoting

* Look at all columns and all rows to the right/below the pivot element and switch so that
the largest element possible is in the pivot position.

* For complete pivoting, you must change the order of the variable array
* Pivoting procedures give large diagonal elements

* minimize roundoff error

* increase accuracy

* Pivoting is not required when the matrix is diagonally dominant

e A matrix is diagonally dominant when the absolute values of the diagonal terms is
greater than the sum of the absolute values of the off diagonal terms for each row

p.17.23



