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LECTURE 17

DIRECT SOLUTIONS TO LINEAR SYSTEMS OF ALGEBRAIC EQUATIONS

• Solve the system of equations



• The solution is formally expressed as:

AX B=

a1 1    a1 2    a1 3    a1 4

a2 1    a2 2    a2 3    a2 4

a3 1    a3 2    a3 3    a3 4

a4 1    a4 2    a4 3    a4 4

x1

x2

x3

x4

b1

b2

b3

b4

=

X A 1– B=
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• Typically it is more efficient to solve for  directly without solving for  since
finding the inverse is an expensive (and less accurate) procedure

• Types of solution procedures

• Direct Procedures

• Exact procedures which have infinite precision (excluding roundoff error)

• Suitable when  is relatively fully populated/dense or well banded

• A predictable number of operations is required

• Indirect Procedures

• Iterative procedures

• Are appropriate when  is

• Large and sparse but not tightly banded

• Very large (since roundoff accumulates more slowly)

• Accuracy of the solution improves as the number of iterations increases

X A 1–

A

A
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Cramer’s Rule - A Direct Procedure

• The components of the solution  are computed as:

where

  is the matrix  with its kth column replaced by vector 

  is the determinant of matrix 

• For each  vector, we must evaluate  determinants of size  where  defines the
size of the matrix 

• Evaluate a determinant as follows using the method of expansion by cofactors

X

xk

Ak

A
---------=

Ak A B

A A

B N 1+ N N
A

A aI j cof aI j  
j 1=

N

 ai J cof ai J  
i 1=

N

= =
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where

  = specified value of 

  = specified value of 

minor  = determinant of the sub-matrix obtained by deleting the ith row and the
jth column

• Procedure is repeated until  matrices are established (which has a determinant by
definition):

I i

J j

cof ai j  1– i j+ minor ai j  =

ai j 

2 2

A
a1 1    a1 2

a2 1    a2 2

a1 1 a2 2  a2 1 a1 2–= =
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Example

• Evaluate the determinant of 

      



A

det A  A

a1 1    a1 2    a1 3

a2 1    a2 2    a2 3

a3 1    a3 2    a3 3

= =

det A  a1 1 1–  1 1+  a2 2    a2 3

a3 2    a3 3

a1 2 1–  1 2+  a2 1    a2 3

a3 1    a3 3

+=

 a1 3 1–  1 3+  a2 1    a2 2

a3 1    a3 2

+

det A  a1 1 +1  a2 2 a3 3 a3 2 a2 3–  a1 2 1–  a2 1 a3 3 a3 1 a2 3– +=

   a1 3 +1  a2 1 a3 2 a3 1 a2 2– +
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• Note that more efficient methods are available to compute the determinant of a matrix.
These methods are associated with alternative direct procedures.

• This evaluation of the determinant involves  operations

• Number of operations for Cramers’ Rule 

 system    

 system    

 system    

• Cramer’s rule is not a good method for very large systems!

• If  and      no solution! The matrix  is singular

• If  and       infinite number of solutions!

O N 3

O N 4

2 2 O 24  O 16 =

4 4 O 44  O 256 =

8 8 O 84  O 4096 =

A 0= Ak 0 A

A 0= Ak 0=
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Gauss Elimination - A Direct Procedure

• Basic concept is to produce an upper or lower triangular matrix and to then use back-
ward or forward substitution to solve for the unknowns.

Example application

• Solve the system of equations

• Divide the first row of  and  by  (pivot element) to get

a1 1    a1 2    a1 3

a2 1    a2 2    a2 3

a3 1    a3 2    a3 3

x1

x2

x3

b1

b2

b3

=

A B a1 1

1   a'1 2    a'1 3

a2 1    a2 2    a2 3

a3 1    a3 2    a3 3

x1

x2

x3

b'1
b2

b3

=
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• Now multiply row 1 by  and subtract from row 2 

and then multiply row 1 by  and subtract from row 3

• Now divide row 2 by  (pivot element)

a2 1

a3 1

1   a'1 2    a'1 3

0   a'2 2    a'2 3

0   a'3 2    a'3 3

x1

x2

x3

b'1
b'2
b'3

=

a'2 2

1   a'1 2    a'1 3

0   1   a''2 3

0   a'3 2    a'3 3

x1

x2

x3

b'1
b''2
b'3

=
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• Now multiply row 2 by  and subtract from row 3 to get

• Finally divide row 3 by  (pivot element) to complete the triangulation procedure
and results in the upper triangular matrix

• We have triangularized the coefficient matrix simply by taking linear combinations of
the equations

a'3 2

1   a'1 2    a'1 3

0   1   a''2 3

0   0   a''3 3

x1

x2

x3

b'1
b''2
b''3

=

a''3 3

1   a'1 2    a'1 3

0   1   a''2 3

0   0   1

x1

x2

x3

b'1
b''2
b'''3

=
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• We can very conveniently solve the upper triangularized system of equations

• We apply a backward substitution procedure to solve for the components of  

    

     

• We can also produce a lower triangular matrix and use a forward substitution procedure

1   a'1 2    a'1 3

0   1   a''2 3

0   0   1

x1

x2

x3

b'1
b''2
b'''3

=

X

x3 b'''3=

x2 a''2 3 x3+ b''2= x2 b''2 a''2 3 x3–=

x1 a'1 2 x2 a'1 3 x3+ + b'1= x1 b'1 a'1 2 x2 a'1 3 x3––=
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• Number of operations required for Gauss elimination

• Triangularization   

• Backward substitution   

• Total number of operations for Gauss elimination equals  versus  for
Cramer’s rule

• Therefore we save  operations as compared to Cramer’s rule

Gauss-Jordan Elimination - A Direct Procedure

• Gauss Jordan elimination is an adaptation of Gauss elimination in which both elements
above and below the pivot element are cleared to zero  the entire column except the
pivot element become zeroes

• No backward/forward substitution is necessary

1
3
---N3

1
2
---N2

O N 3 O N 4

O N 

1  0  0  0

0  1  0  0

0  0  1  0

0  0  0  1

x1

x2

x3

x4

b1

b2

b3

b4

=
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Matrix Inversion by Gauss-Jordan Elimination

• Given , find  such that

where  = identity matrix =  

• Procedure is similar to finding the solution of  except that the matrix 

assumes the role of vector  and matrix  serves as vector 

•  Therefore we perform the same operations on  and 

A A 1–

AA 1– I

I

1  0  0  0  0  0

0  1  0  0  0  0

0  0  1  0  0  0

0  0  0  1  0  0

0  0  0  0  1  0

0  0  0  0  0  1

AX B= A 1–

X I B

A I
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• Convert  through Gauss-Jordan elimination

     



     

• However through the manipulations  and therefore

     



• The right hand side matrix, , has been transformed into the inverted matrix

A I

AA 1– I=

AA 1– I=

A A I=

IA 1– I=

A 1– I=

I
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• Notes:

• Inverting a diagonal matrix simply involves computing reciprocals

   

     

•  Inverse of the product relationship

A

a11 0 0

0 a22 0

0 0 a33

=

A 1–

1/a11 0 0

0 1/a22 0

0 0 1/a33

=

AA 1– I=

A1A2A3  1– A3
1– A2

1– A1
1–=
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Gauss Elimination Type Solutions to Banded Matrices

Banded matrices

• Have non-zero entries contained within a defined number of positions to the left and
right of the diagonal (bandwidth)

 INSERT FIGURE NO. 122

x x xo o o o o o o o o

x x x o o o o o o o ox

x o o o o o oxo o x x

x o o o o ox x xooo

o x x o x o x o o o o o

o o o xx x x o x o o o

o o o x o x x x o x o o

o o o o o o x x x x
o

o

o o o o o x o x x x x

o o o o o o x o x x

o

x o

o o o o o o o o x x x x

o o o o o o o o x x xo

o o o x x o x

o o x x x x o

o x x o x xo

x x o xox

x x o x o x o

o x x o

x x x o

o x x x
o

o

x o x x x x

x x o

o x x
o x o

x x x

o

o x x

o x

x o x o

x x o o

x x o o

NxN System Compact Diagonal

halfbandwidth bandwidth
M

stored 
as

M + 1
2

bandwidth M = 7

= 4

storage required = N2 storage required = NM
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• Notes on banded matrices

• The advantage of banded storage mode is that we avoid storing and manipulating
zero entries outside of the defined bandwidth

• Banded matrices typically result from finite difference and finite element methods
(conversion from p.d.e.  algebraic equations)

• Compact banded storage mode can still be sparse (this is particularly true for large
finite difference and finite element problems)

Savings on storage for banded matrices

•  for full storage versus  for banded storage

      where  = the size of the matrix and  = the bandwidth

• Examples:

N M full banded ratio

400 20 160,000 8,000 20

106 103 1012 109 1000

N2 NM

N M
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Savings on computations for banded matrices

• Assuming a Gauss elimination procedure

 versus 

(full)         (banded)

• Therefore save  operations since we are not manipulating all the zeros outside
of the bands!

• Examples:

N M full banded ratio

400 20 O(6.4x107) O(1.6x105) O(400)

106 103 O(1018) O(1012) O(106)

O N3  O NM2 

O N2/M2 
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Symmetrical banded matrices

• Substantial savings on both storage and computations if we use a banded storage mode

• Even greater savings (both storage and computations) are possible if the matrix  is
symmetrical

• Therefore if  we need only store  and operate on half the bandwidth in a
banded matrix (half the matrix in a full storage mode matrix)

 INSERT FIGURE NO. 123a

A

aij aji=

(M + 1)/2

store 
only half

(M + 1)/2
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Alternative Compact Storage Modes for Direct Methods

• Skyline method defines an alternative compact storage procedure for symmetrical
matrices

• The skyline goes below the last non-zero element in a column

 INSERT FIGURE NO. 123b

a11 a12

a22 a23

a33 a34

a44

o

a14

a45

o

o

o

a55

o

o

a36

a46

a56

a66

symmetrical

o
Skyline goes above the last
non-zero element in a column
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• Store all entries between skyline and diagonal into a vector  as follows:
 INSERT FIGURE NO. 124

• Accounting procedure must be able to identify the location within the matrix of
elements stored in vector mode in  Store locations of diagonal terms in 

o o

symmetrical

A(1) oA(3) A(9)

A(2) A(5) A(8) o o

A(4) A(7) o A(15)

A(6) A(14)A(11)

A(13)A(10)

A(12)

A i  A i 

MaxA

1

2

4

6

10

12

=
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• Savings in storage and computation time due to the elimination of the additional zeroes

e.g. storage savings:

• Program COLSOL (Bathe and Wilson) available for skyline storage solution

full symmetrical banded skyline

N2 36= M 1+
2

-------------- 
 N

7 1+
2

------------ 
  6 24= = 15
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Problems with Gauss Elimination Procedures

Inaccuracies originating from the pivot elements

• The pivot element is the diagonal element which divides the associated row

• As more pivot rows are processed, the number of times a pivot element has been modi-
fied increases.

• Sometimes a pivot element can become very small compared to the rest of the elements
in the pivot row

• Pivot element will be inaccurate due to roundoff

• When the pivot element divides the rest of the pivot row, large inaccurate numbers
result across the pivot row

• Pivot row now subtracts (after being multiplied) from all rows below the pivot row,
resulting in propagation of large errors throughout the matrix!

Partial pivoting

• Always look below the pivot element and pick the row with the largest value and switch
rows
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Complete pivoting

• Look at all columns and all rows to the right/below the pivot element and switch so that
the largest element possible is in the pivot position.

• For complete pivoting, you must change the order of the variable array

• Pivoting procedures give large diagonal elements

• minimize roundoff error

• increase accuracy

• Pivoting is not required when the matrix is diagonally dominant 

•  A matrix is diagonally dominant when the absolute values of the diagonal terms is
greater than the sum of the absolute values of the off diagonal terms for each row


