LECTURE 17

DIRECT SOLUTIONS TO LINEAR SYSTEMS OF ALGEBRAIC EQUATIONS

• Solve the system of equations

\[AX = B \]

\[\Rightarrow \]

\[
\begin{bmatrix}
a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\
a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\
a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} \\
a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
b_3 \\
b_4
\end{bmatrix}
\]

• The solution is formally expressed as:

\[X = A^{-1}B \]
Typically it is more efficient to solve for X directly without solving for A^{-1} since finding the inverse is an expensive (and less accurate) procedure.

Types of solution procedures

Direct Procedures
- Exact procedures which have infinite precision (excluding roundoff error)
- Suitable when A is relatively fully populated/dense or well banded
- A predictable number of operations is required

Indirect Procedures
- Iterative procedures
- Are appropriate when A is
 - Large and sparse but not tightly banded
 - Very large (since roundoff accumulates more slowly)
- Accuracy of the solution improves as the number of iterations increases
Cramer’s Rule - A Direct Procedure

• The components of the solution X are computed as:

$$x_k = \frac{|A_k|}{|A|}$$

where

A_k is the matrix A with its k^{th} column replaced by vector B

$|A|$ is the determinant of matrix A

• For each B vector, we must evaluate $N + 1$ determinants of size N where N defines the size of the matrix A

• Evaluate a determinant as follows using the method of expansion by cofactors

$$|A| = \sum_{i=1}^{N} a_{i,j} [cof(a_{i,j})] = \sum_{i=1}^{N} a_{i,j} [cof(a_{i,j})]$$
where

\[I = \text{specified value of } i \]

\[J = \text{specified value of } j \]

\[\text{cof}(a_{i,j}) = (-1)^{i+j}(\text{minor}(a_{i,j})) \]

\[\text{minor } (a_{i,j}) = \text{determinant of the sub-matrix obtained by deleting the } i^{th} \text{ row and the } j^{th} \text{ column} \]

• Procedure is repeated until \(2 \times 2 \) matrices are established (which has a determinant by definition):

\[
|A| = \begin{bmatrix}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{bmatrix} = a_{1,1}a_{2,2} - a_{2,1}a_{1,2}
\]
Example

• Evaluate the determinant of A

$$det[A] = |A| = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix} \Rightarrow$$

$$det[A] = a_{1,1}(-1)^{(1+1)} \begin{bmatrix} a_{2,2} & a_{2,3} \\ a_{3,2} & a_{3,3} \end{bmatrix} + a_{1,2}(-1)^{(1+2)} \begin{bmatrix} a_{2,1} & a_{2,3} \\ a_{3,1} & a_{3,3} \end{bmatrix}$$

$$+ a_{1,3}(-1)^{(1+3)} \begin{bmatrix} a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \end{bmatrix} \Rightarrow$$

$$det[A] = a_{1,1}(+1)(a_{2,2}a_{3,3} - a_{3,2}a_{2,3}) + a_{1,2}(-1)(a_{2,1}a_{3,3} - a_{3,1}a_{2,3})$$

$$+ a_{1,3}(+1)(a_{2,1}a_{3,2} - a_{3,1}a_{2,2})$$
• Note that more efficient methods are available to compute the determinant of a matrix. These methods are associated with alternative direct procedures.

• This evaluation of the determinant involves $O(N)^3$ operations

• Number of operations for Cramer’s Rule $O(N)^4$

$$
2 \times 2 \text{ system } \Rightarrow \quad O(2^4) = O(16)
$$

$$
4 \times 4 \text{ system } \Rightarrow \quad O(4^4) = O(256)
$$

$$
8 \times 8 \text{ system } \Rightarrow \quad O(8^4) = O(4096)
$$

• **Cramer’s rule is not a good method for very large systems!**

• If $|A| = 0$ and $|A_k| \neq 0$ \Rightarrow no solution! The matrix A is singular

• If $|A| = 0$ and $|A_k| = 0$ \Rightarrow infinite number of solutions!
Gauss Elimination - A Direct Procedure

- Basic concept is to produce an upper or lower triangular matrix and to then use backward or forward substitution to solve for the unknowns.

Example application

- Solve the system of equations

\[
\begin{bmatrix}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
b_3
\end{bmatrix}
\]

- Divide the first row of \(\mathbf{A} \) and \(\mathbf{B} \) by \(a_{1,1} \) (pivot element) to get

\[
\begin{bmatrix}
1 & a'_{1,2} & a'_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
b'_1 \\
b_2 \\
b_3
\end{bmatrix}
\]
• Now multiply row 1 by \(a_{2,1} \) and subtract from row 2

and then multiply row 1 by \(a_{3,1} \) and subtract from row 3

\[
\begin{bmatrix}
1 & a'_{1,2} & a'_{1,3} \\
0 & a'_{2,2} & a'_{2,3} \\
0 & a'_{3,2} & a'_{3,3}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
b'_1 \\
b'_2 \\
b'_3
\end{bmatrix}
\]

• Now divide row 2 by \(a'_{2,2} \) (pivot element)

\[
\begin{bmatrix}
1 & a'_{1,2} & a'_{1,3} \\
0 & 1 & a''_{2,3} \\
0 & a'_{3,2} & a'_{3,3}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
b'_1 \\
b''_2 \\
b'_3
\end{bmatrix}
\]
• Now multiply row 2 by $a'_{3,2}$ and subtract from row 3 to get

\[
\begin{bmatrix}
1 & a'_{1,2} & a'_{1,3} \\
0 & 1 & a''_{2,3} \\
0 & 0 & a''_{3,3}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} =
\begin{bmatrix}
b'_1 \\
b''_2 \\
b''_3
\end{bmatrix}
\]

• Finally divide row 3 by $a''_{3,3}$ (pivot element) to complete the triangulation procedure and results in the upper triangular matrix

\[
\begin{bmatrix}
1 & a'_{1,2} & a'_{1,3} \\
0 & 1 & a''_{2,3} \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} =
\begin{bmatrix}
b'_1 \\
b''_2 \\
b'''_3
\end{bmatrix}
\]

• We have triangularized the coefficient matrix simply by taking linear combinations of the equations
• We can very conveniently solve the upper triangularized system of equations

\[
\begin{bmatrix}
1 & a'_{1,2} & a'_{1,3} \\
0 & 1 & a''_{2,3} \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
b'_1 \\
b''_2 \\
b'''_3
\end{bmatrix}
\]

• We apply a backward substitution procedure to solve for the components of \(X \)

\[
x_3 = b'''_3
\]

\[
x_2 + a''_{2,3}x_3 = b''_2 \quad \Rightarrow \quad x_2 = b''_2 - a''_{2,3}x_3
\]

\[
x_1 + a'_{1,2}x_2 + a'_{1,3}x_3 = b'_1 \quad \Rightarrow \quad x_1 = b'_1 - a'_{1,2}x_2 - a'_{1,3}x_3
\]

• We can also produce a lower triangular matrix and use a forward substitution procedure
• Number of operations required for Gauss elimination

 • Triangularization \(\frac{1}{3}N^3 \)

 • Backward substitution \(\frac{1}{2}N^2 \)

 • Total number of operations for Gauss elimination equals \(O(N)^3 \) versus \(O(N)^4 \) for Cramer’s rule

 • Therefore we save \(O(N) \) operations as compared to Cramer’s rule

Gauss-Jordan Elimination - A Direct Procedure

• Gauss Jordan elimination is an adaptation of Gauss elimination in which both elements above and below the pivot element are cleared to zero → the entire column except the pivot element become zeroes

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix}
=
\begin{bmatrix}
b_1'''' \\
b_2'''' \\
b_3'''' \\
b_4''''
\end{bmatrix}
\]

• No backward/forward substitution is necessary
Matrix Inversion by Gauss-Jordan Elimination

• Given \(A \), find \(A^{-1} \) such that

\[AA^{-1} = I \]

where \(I = \) identity matrix =

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

• Procedure is similar to finding the solution of \(AX = B \) except that the matrix \(A^{-1} \) assumes the role of vector \(X \) and matrix \(I \) serves as vector \(B \)

 • Therefore we perform the same operations on \(A \) and \(I \)
• Convert $A \rightarrow I$ through Gauss-Jordan elimination

\[AA^{-1} = I \]

\[\Rightarrow \]

\[A'A^{-1} = I' \]

• However through the manipulations $A \rightarrow A' = I$ and therefore

\[IA^{-1} = I' \]

\[\Rightarrow \]

\[A^{-1} = I' \]

• The right hand side matrix, I', has been transformed into the inverted matrix
• Inverting a diagonal matrix simply involves computing reciprocals

\[
A = \begin{bmatrix}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{bmatrix}
\]

\[
A^{-1} = \begin{bmatrix}
1/a_{11} & 0 & 0 \\
0 & 1/a_{22} & 0 \\
0 & 0 & 1/a_{33}
\end{bmatrix}
\]

\[
AA^{-1} = I
\]

• Inverse of the product relationship

\[
[A_1A_2A_3]^{-1} = A_3^{-1}A_2^{-1}A_1^{-1}
\]
Gauss Elimination Type Solutions to Banded Matrices

Banded matrices

- Have non-zero entries contained within a defined number of positions to the left and right of the diagonal (bandwidth)

\[
\begin{array}{cccccccccc}
 \text{NxN System} & & & & & \text{Compact} & & & & \text{Diagonal} \\
 x & x & o & x & o & o & o & o & o & o \\
 x & x & x & x & o & o & o & o & o & o \\
 0 & x & x & o & x & o & o & o & o & o \\
 x & o & x & x & o & x & o & o & o & o \\
 o & x & x & o & x & o & o & o & o & o \\
 o & o & o & o & x & x & x & o & x & o \\
 0 & o & o & o & o & o & o & x & x & x \\
 o & o & o & o & o & o & o & x & x & x \\
 o & o & o & o & o & o & o & x & x & x \\
 o & o & o & o & o & o & o & x & x & x \\
 0 & o & o & o & o & o & o & x & x & x \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x & x \\
 o & o & o & o & o & o & o & x & x & x \\
 x & x & x & x & o & x & o & o & o & o \\
 x & o & x & x & o & x & o & o & o & o \\
 0 & o & o & o & o & x & x & x & x & x \\
 x & x & x & x & o & x & o & o & o & o \\
 x & o & x & x & o & x & o & o & o & o \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x & x \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x & x \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x & x \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x & x \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x & x \\
\end{array}
\]

\[
\text{halfbandwidth} \quad \frac{M + 1}{2} = 4 \\
\text{bandwidth} M = 7
\]

\[
\text{storage required} = N^2
\]

\[
\text{storage required} = NM
\]
Notes on banded matrices

- The advantage of banded storage mode is that we avoid storing and manipulating zero entries outside of the defined bandwidth.

- Banded matrices typically result from finite difference and finite element methods (conversion from p.d.e. \(\rightarrow \) algebraic equations).

- Compact banded storage mode can still be sparse (this is particularly true for large finite difference and finite element problems).

Savings on storage for banded matrices

- \(N^2 \) for full storage versus \(NM \) for banded storage

 where \(N = \) the size of the matrix and \(M = \) the bandwidth

- Examples:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>full</th>
<th>banded</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>20</td>
<td>160,000</td>
<td>8,000</td>
<td>20</td>
</tr>
<tr>
<td>(10^6)</td>
<td>(10^3)</td>
<td>(10^{12})</td>
<td>(10^9)</td>
<td>1000</td>
</tr>
</tbody>
</table>
Savings on computations for banded matrices

- Assuming a Gauss elimination procedure

 \[O(N^3) \text{ versus } O(NM^2) \]

 (full) \quad (banded)

- Therefore save \(O(N^2/M^2) \) operations since we are not manipulating all the zeros outside of the bands!

- Examples:

<table>
<thead>
<tr>
<th>N</th>
<th>M</th>
<th>full</th>
<th>banded</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>20</td>
<td>(O(6.4\times10^7))</td>
<td>(O(1.6\times10^5))</td>
<td>(O(400))</td>
</tr>
<tr>
<td>(10^6)</td>
<td>(10^3)</td>
<td>(O(10^{18}))</td>
<td>(O(10^{12}))</td>
<td>(O(10^6))</td>
</tr>
</tbody>
</table>
Symmetrical banded matrices

- Substantial savings on both storage and computations if we use a banded storage mode
- Even greater savings (both storage and computations) are possible if the matrix \mathbf{A} is symmetrical
 - Therefore if $a_{ij} = a_{ji}$ we need only store and operate on half the bandwidth in a banded matrix (half the matrix in a full storage mode matrix)
Alternative Compact Storage Modes for Direct Methods

- Skyline method defines an alternative compact storage procedure for symmetrical matrices
- The skyline goes below the last non-zero element in a column

![Diagram showing skyline method for symmetrical matrix]

Skyline goes above the last non-zero element in a column
• Store *all* entries between skyline and diagonal into a vector as follows:

\[
\begin{bmatrix}
A(1) & A(3) & o & A(9) & o & o \\
A(2) & A(5) & A(8) & o & o \\
A(4) & A(7) & o & A(15) \\
A(6) & A(11) & A(14) \\
symmetrical \\
A(10) & A(13) \\
A(12)
\end{bmatrix}
\]

• Accounting procedure must be able to identify the location within the matrix of elements stored in vector mode in \(A(i) \) \(\Rightarrow \) Store locations of diagonal terms in \(A(i) \)

\[
MaxA = \begin{bmatrix}
1 \\
2 \\
4 \\
6 \\
10 \\
12
\end{bmatrix}
\]
• Savings in storage and computation time due to the elimination of the additional zeroes
 e.g. storage savings:

 \[
 N^2 = 36
 \]

 \[
 \left(\frac{M+1}{2}\right)N = \left(\frac{7+1}{2}\right)6 = 24
 \]

 15

• Program COLSOL (Bathe and Wilson) available for skyline storage solution
Problems with Gauss Elimination Procedures

Inaccuracies originating from the pivot elements

• **The pivot element** is the diagonal element which divides the associated row

• As more pivot rows are processed, the number of times a pivot element has been modified increases.

• Sometimes a pivot element can become very small compared to the rest of the elements in the pivot row
 - Pivot element will be inaccurate due to roundoff
 - When the pivot element divides the rest of the pivot row, large inaccurate numbers result across the pivot row
 - Pivot row now subtracts (after being multiplied) from all rows below the pivot row, resulting in propagation of large errors throughout the matrix!

Partial pivoting

• Always look below the pivot element and pick the row with the largest value and switch rows
Complete pivoting

- Look at all columns and all rows to the right/below the pivot element and switch so that the largest element possible is in the pivot position.

- For complete pivoting, you must change the order of the variable array.

- Pivoting procedures give large diagonal elements
 - minimize roundoff error
 - increase accuracy

- Pivoting is not required when the matrix is diagonally dominant
 - A matrix is diagonally dominant when the absolute values of the diagonal terms is greater than the sum of the absolute values of the off diagonal terms for each row.