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LECTURE 17

DIRECT SOLUTIONS TO LINEAR SYSTEMS OF ALGEBRAIC EQUATIONS

• Solve the system of equations



• The solution is formally expressed as:

AX B=

a1 1    a1 2    a1 3    a1 4

a2 1    a2 2    a2 3    a2 4

a3 1    a3 2    a3 3    a3 4

a4 1    a4 2    a4 3    a4 4

x1

x2

x3

x4

b1

b2

b3

b4

=

X A 1– B=
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• Typically it is more efficient to solve for  directly without solving for  since
finding the inverse is an expensive (and less accurate) procedure

• Types of solution procedures

• Direct Procedures

• Exact procedures which have infinite precision (excluding roundoff error)

• Suitable when  is relatively fully populated/dense or well banded

• A predictable number of operations is required

• Indirect Procedures

• Iterative procedures

• Are appropriate when  is

• Large and sparse but not tightly banded

• Very large (since roundoff accumulates more slowly)

• Accuracy of the solution improves as the number of iterations increases

X A 1–

A

A



CE 30125 - Lecture 17

p. 17.3

Cramer’s Rule - A Direct Procedure

• The components of the solution  are computed as:

where

  is the matrix  with its kth column replaced by vector 

  is the determinant of matrix 

• For each  vector, we must evaluate  determinants of size  where  defines the
size of the matrix 

• Evaluate a determinant as follows using the method of expansion by cofactors

X

xk

Ak

A
---------=

Ak A B

A A

B N 1+ N N
A

A aI j cof aI j  
j 1=

N

 ai J cof ai J  
i 1=

N

= =
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where

  = specified value of 

  = specified value of 

minor  = determinant of the sub-matrix obtained by deleting the ith row and the
jth column

• Procedure is repeated until  matrices are established (which has a determinant by
definition):

I i

J j

cof ai j  1– i j+ minor ai j  =

ai j 

2 2

A
a1 1    a1 2

a2 1    a2 2

a1 1 a2 2  a2 1 a1 2–= =
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Example

• Evaluate the determinant of 

      



A

det A  A

a1 1    a1 2    a1 3

a2 1    a2 2    a2 3

a3 1    a3 2    a3 3

= =

det A  a1 1 1–  1 1+  a2 2    a2 3

a3 2    a3 3

a1 2 1–  1 2+  a2 1    a2 3

a3 1    a3 3

+=

 a1 3 1–  1 3+  a2 1    a2 2

a3 1    a3 2

+

det A  a1 1 +1  a2 2 a3 3 a3 2 a2 3–  a1 2 1–  a2 1 a3 3 a3 1 a2 3– +=

   a1 3 +1  a2 1 a3 2 a3 1 a2 2– +
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• Note that more efficient methods are available to compute the determinant of a matrix.
These methods are associated with alternative direct procedures.

• This evaluation of the determinant involves  operations

• Number of operations for Cramers’ Rule 

 system    

 system    

 system    

• Cramer’s rule is not a good method for very large systems!

• If  and      no solution! The matrix  is singular

• If  and       infinite number of solutions!

O N 3

O N 4

2 2 O 24  O 16 =

4 4 O 44  O 256 =

8 8 O 84  O 4096 =

A 0= Ak 0 A

A 0= Ak 0=
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Gauss Elimination - A Direct Procedure

• Basic concept is to produce an upper or lower triangular matrix and to then use back-
ward or forward substitution to solve for the unknowns.

Example application

• Solve the system of equations

• Divide the first row of  and  by  (pivot element) to get

a1 1    a1 2    a1 3

a2 1    a2 2    a2 3

a3 1    a3 2    a3 3

x1

x2

x3

b1

b2

b3

=

A B a1 1

1   a'1 2    a'1 3

a2 1    a2 2    a2 3

a3 1    a3 2    a3 3

x1

x2

x3

b'1
b2

b3

=
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• Now multiply row 1 by  and subtract from row 2 

and then multiply row 1 by  and subtract from row 3

• Now divide row 2 by  (pivot element)

a2 1

a3 1

1   a'1 2    a'1 3

0   a'2 2    a'2 3

0   a'3 2    a'3 3

x1

x2

x3

b'1
b'2
b'3

=

a'2 2

1   a'1 2    a'1 3

0   1   a''2 3

0   a'3 2    a'3 3

x1

x2

x3

b'1
b''2
b'3

=
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• Now multiply row 2 by  and subtract from row 3 to get

• Finally divide row 3 by  (pivot element) to complete the triangulation procedure
and results in the upper triangular matrix

• We have triangularized the coefficient matrix simply by taking linear combinations of
the equations

a'3 2

1   a'1 2    a'1 3

0   1   a''2 3

0   0   a''3 3

x1

x2

x3

b'1
b''2
b''3

=

a''3 3

1   a'1 2    a'1 3

0   1   a''2 3

0   0   1

x1

x2

x3

b'1
b''2
b'''3

=
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• We can very conveniently solve the upper triangularized system of equations

• We apply a backward substitution procedure to solve for the components of  

    

     

• We can also produce a lower triangular matrix and use a forward substitution procedure

1   a'1 2    a'1 3

0   1   a''2 3

0   0   1

x1

x2

x3

b'1
b''2
b'''3

=

X

x3 b'''3=

x2 a''2 3 x3+ b''2= x2 b''2 a''2 3 x3–=

x1 a'1 2 x2 a'1 3 x3+ + b'1= x1 b'1 a'1 2 x2 a'1 3 x3––=
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• Number of operations required for Gauss elimination

• Triangularization   

• Backward substitution   

• Total number of operations for Gauss elimination equals  versus  for
Cramer’s rule

• Therefore we save  operations as compared to Cramer’s rule

Gauss-Jordan Elimination - A Direct Procedure

• Gauss Jordan elimination is an adaptation of Gauss elimination in which both elements
above and below the pivot element are cleared to zero  the entire column except the
pivot element become zeroes

• No backward/forward substitution is necessary

1
3
---N3

1
2
---N2

O N 3 O N 4

O N 

1  0  0  0

0  1  0  0

0  0  1  0

0  0  0  1

x1

x2

x3

x4

b1

b2

b3

b4

=
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Matrix Inversion by Gauss-Jordan Elimination

• Given , find  such that

where  = identity matrix =  

• Procedure is similar to finding the solution of  except that the matrix 

assumes the role of vector  and matrix  serves as vector 

•  Therefore we perform the same operations on  and 

A A 1–

AA 1– I

I

1  0  0  0  0  0

0  1  0  0  0  0

0  0  1  0  0  0

0  0  0  1  0  0

0  0  0  0  1  0

0  0  0  0  0  1

AX B= A 1–

X I B

A I
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• Convert  through Gauss-Jordan elimination

     



     

• However through the manipulations  and therefore

     



• The right hand side matrix, , has been transformed into the inverted matrix

A I

AA 1– I=

AA 1– I=

A A I=

IA 1– I=

A 1– I=

I
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• Notes:

• Inverting a diagonal matrix simply involves computing reciprocals

   

     

•  Inverse of the product relationship

A

a11 0 0

0 a22 0

0 0 a33

=

A 1–

1/a11 0 0

0 1/a22 0

0 0 1/a33

=

AA 1– I=

A1A2A3  1– A3
1– A2

1– A1
1–=
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Gauss Elimination Type Solutions to Banded Matrices

Banded matrices

• Have non-zero entries contained within a defined number of positions to the left and
right of the diagonal (bandwidth)

 INSERT FIGURE NO. 122
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NxN System Compact Diagonal
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M

stored 
as

M + 1
2

bandwidth M = 7

= 4

storage required = N2 storage required = NM
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• Notes on banded matrices

• The advantage of banded storage mode is that we avoid storing and manipulating
zero entries outside of the defined bandwidth

• Banded matrices typically result from finite difference and finite element methods
(conversion from p.d.e.  algebraic equations)

• Compact banded storage mode can still be sparse (this is particularly true for large
finite difference and finite element problems)

Savings on storage for banded matrices

•  for full storage versus  for banded storage

      where  = the size of the matrix and  = the bandwidth

• Examples:

N M full banded ratio

400 20 160,000 8,000 20

106 103 1012 109 1000

N2 NM

N M
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Savings on computations for banded matrices

• Assuming a Gauss elimination procedure

 versus 

(full)         (banded)

• Therefore save  operations since we are not manipulating all the zeros outside
of the bands!

• Examples:

N M full banded ratio

400 20 O(6.4x107) O(1.6x105) O(400)

106 103 O(1018) O(1012) O(106)

O N3  O NM2 

O N2/M2 
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Symmetrical banded matrices

• Substantial savings on both storage and computations if we use a banded storage mode

• Even greater savings (both storage and computations) are possible if the matrix  is
symmetrical

• Therefore if  we need only store  and operate on half the bandwidth in a
banded matrix (half the matrix in a full storage mode matrix)

 INSERT FIGURE NO. 123a

A

aij aji=

(M + 1)/2

store 
only half

(M + 1)/2
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Alternative Compact Storage Modes for Direct Methods

• Skyline method defines an alternative compact storage procedure for symmetrical
matrices

• The skyline goes below the last non-zero element in a column

 INSERT FIGURE NO. 123b

a11 a12

a22 a23

a33 a34

a44

o

a14

a45

o

o

o

a55

o

o

a36

a46

a56

a66

symmetrical

o
Skyline goes above the last
non-zero element in a column
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• Store all entries between skyline and diagonal into a vector  as follows:
 INSERT FIGURE NO. 124

• Accounting procedure must be able to identify the location within the matrix of
elements stored in vector mode in  Store locations of diagonal terms in 

o o

symmetrical

A(1) oA(3) A(9)

A(2) A(5) A(8) o o

A(4) A(7) o A(15)

A(6) A(14)A(11)

A(13)A(10)

A(12)

A i  A i 

MaxA

1

2

4

6

10

12

=
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• Savings in storage and computation time due to the elimination of the additional zeroes

e.g. storage savings:

• Program COLSOL (Bathe and Wilson) available for skyline storage solution

full symmetrical banded skyline

N2 36= M 1+
2

-------------- 
 N

7 1+
2

------------ 
  6 24= = 15
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Problems with Gauss Elimination Procedures

Inaccuracies originating from the pivot elements

• The pivot element is the diagonal element which divides the associated row

• As more pivot rows are processed, the number of times a pivot element has been modi-
fied increases.

• Sometimes a pivot element can become very small compared to the rest of the elements
in the pivot row

• Pivot element will be inaccurate due to roundoff

• When the pivot element divides the rest of the pivot row, large inaccurate numbers
result across the pivot row

• Pivot row now subtracts (after being multiplied) from all rows below the pivot row,
resulting in propagation of large errors throughout the matrix!

Partial pivoting

• Always look below the pivot element and pick the row with the largest value and switch
rows
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Complete pivoting

• Look at all columns and all rows to the right/below the pivot element and switch so that
the largest element possible is in the pivot position.

• For complete pivoting, you must change the order of the variable array

• Pivoting procedures give large diagonal elements

• minimize roundoff error

• increase accuracy

• Pivoting is not required when the matrix is diagonally dominant 

•  A matrix is diagonally dominant when the absolute values of the diagonal terms is
greater than the sum of the absolute values of the off diagonal terms for each row


