## LECTURE 18

## DIRECT SOLUTIONS TO LINEAR ALGEBRAIC SYSTEMS - CONTINUED

## Ill-conditioning of Matrices

- There is no clear cut or precise definition of an ill-conditioned matrix.


## Effects of ill-conditioning

- Roundoff error accrues in the calculations
- Can potentially result in very inaccurate solutions
- Small variation in matrix coefficients causes large variations in the solution


## Detection of ill-conditioning in a matrix

- An inaccurate solution for $\boldsymbol{X}$ can satisfy an ill-conditioned matrix quite well!
- Apply back substitution to check for ill-conditioning
- Solve $\mathbf{A X}=\boldsymbol{B}$ through Gauss or other direct method $\rightarrow \boldsymbol{X}_{\text {poor }}$
- Back substitute $\mathbf{A} \boldsymbol{X}_{\text {poor }} \rightarrow \boldsymbol{B}_{\text {poor }}$
- Comparing we find that $\boldsymbol{B}_{\text {poor }} \approx \boldsymbol{B}$
- Back substitution is not a good detection technique.
- The effects of ill-conditioning are very subtle!
- Examine the inverse of matrix $\mathbf{A}$
- If there are elements of $\mathbf{A}^{-1}$ which are many orders of magnitude larger than the original matrix, $\mathbf{A}$, then $\mathbf{A}$ is probably ill-conditioned
- It is always best to normalize the rows of the original matrix such that the maximum magnitude is of order 1
- Evaluate $\mathbf{A}^{-1}$ using the same method with which you are solving the system of equations. Now compute $\mathbf{A}^{-1} \mathbf{A}$ and compare the results to I. If there's a significant deviation, then the presence of serious roundoff exists!
- Compute $\left(\mathbf{A}^{-1}\right)^{-1}$ using the same method with which you are solving the system of equations. This is a more severe test of roundoff since it is accumulated both in the original inversion and the re-inversion.
- Can also evaluate ill-conditioning by examining the normalized determinant. The matrix may be ill-conditioned when:

$$
\frac{\operatorname{det} \mathbf{A}}{\sqrt{\sum_{i-1}^{N} \sum_{i-1}^{N} a_{i j}^{2}}} \ll 1
$$

where

$$
\text { Euclidean Norm of } \mathbf{A} \equiv \sqrt{\sum_{i=1}^{N}} \sum_{i=1}^{N} a_{i j}^{2}
$$

- If the matrix A is diagonally dominant, i.e. the absolute values of the diagonal terms $\geq$ the sum of the off-diagonal terms for each row, then the matrix is not ill-conditioned

$$
\left|a_{i i}\right| \geq \sum_{\substack{j=1 \\ i \neq i}}^{\text {Lv }}\left|a_{i j}\right| \quad i=1,2, \ldots, N
$$

- Effects of ill-conditioning are most serious in large dense matrices (e.g. especially those obtained in such problems as curve fitting by least squares)
- Sparse banded matrices which result from Finite Difference and Finite Element methods are typically much better conditioned (i.e. can solve fairly large sets of equations without excessive roundoff error problems)
- Ways to overcome ill-conditioning
- Make sure you pivot!
- Use large word size (use double precision)
- Can use error correction schemes to improve the accuracy of the answers
- Use iterative methods


## Factor Method (Cholesky Method)

- Problem with Gauss elimination
- Right hand side "load" vector, $\boldsymbol{B}$, must be available at the time of matrix triangulation
- If $\boldsymbol{B}$ is not available during the triangulation process, the entire triangulation process must be repeated!
- Procedure is not well suited for solving problems in which $\boldsymbol{B}$ changes

$$
\begin{array}{clcc}
\mathbf{A} \boldsymbol{X}=\boldsymbol{B}_{1} & \Rightarrow & O\left(N^{3}\right)+O\left(N^{2}\right) & \text { steps } \\
\mathbf{A X}=\boldsymbol{B}_{2} & \Rightarrow & O\left(N^{3}\right)+O\left(N^{2}\right) & \text { steps } \\
\vdots & & \vdots \\
\mathbf{A X}=\boldsymbol{B}_{R} & \Rightarrow & O\left(N^{3}\right)+O\left(N^{2}\right) & \text { steps }
\end{array}
$$

- Using Gauss elimination, $O\left(N^{3} R\right)$ operations, where $N=$ size of the system of equation and $R=$ the number of different load vectors which must be solved for
- Concept of the factor method is to facilitate the solution of multiple right hand sides without having to go through a re-triangulation process for each $\boldsymbol{B}_{\boldsymbol{r}}$


## Factorization step

- Given $\mathbf{A}$, find $\mathbf{P}$ and $\mathbf{Q}$ such that

$$
\mathbf{A}=\mathbf{P Q}
$$

where $\mathbf{A}, \quad \mathbf{P}$ and $\mathbf{Q}$ are all $N \times N$ matrices

- We note that $|\mathbf{A}| \neq 0 \Rightarrow|\mathbf{P}||\mathbf{Q}| \neq 0$ and therefore neither $\mathbf{P}$ nor $\mathbf{Q}$ can be singular

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{lll}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & p_{33}
\end{array}\right] \bullet\left[\begin{array}{lll}
q_{11} & q_{12} & q_{13} \\
q_{21} & q_{22} & q_{23} \\
q_{31} & q_{32} & q_{33}
\end{array}\right]
$$

- We can only have $N^{2}$ unknowns!
- Define $\mathbf{P}$ as lower triangular
- Define Q as upper triangular
- Now we have $N^{2}+N$ unknowns
- Reduce the number of unknowns by selecting either

$$
\begin{array}{ll}
\text { - } p_{i i}=1 & i=1, N \quad \Rightarrow \quad \text { Doolittle Method } \\
\text { - } q_{i i}=1 & i=1, N \quad \Rightarrow \quad \text { Crout Method }
\end{array}
$$

- Now we only have $N^{2}$ unknowns! We can solve for all unknown elements of $\mathbf{P}$ and $\mathbf{Q}$ by proceeding from left to right and top to bottom

$$
\left.\begin{array}{l}
{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
p_{21} & 1 & 0 \\
p_{31} & p_{32} & 1
\end{array}\right] \bullet\left[\begin{array}{ccc}
q_{11} & q_{12} & q_{13} \\
0 & q_{22} & q_{23} \\
0 & 0 & q_{33}
\end{array}\right]} \\
{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{cc}
q_{11} & q_{12} \\
p_{21} q_{11} & p_{21} q_{12}+q_{22}
\end{array}\right.} \\
p_{21} q_{13}+q_{23} \\
p_{31} q_{11}
\end{array} p_{31} q_{12}+p_{32} q_{22} \quad p_{31} q_{13}+p_{32} q_{23}+q_{33}\right]\left[\begin{array}{c}
\end{array}\right]
$$

- Factorization proceeds from left to right and then top to bottom as:
- Red $\rightarrow$ current unknown being solved
- Blue $\rightarrow$ unknown value already solved

$$
\begin{aligned}
& a_{11}=q_{11} \\
& a_{12}=q_{12} \\
& a_{13}=q_{13} \\
& a_{21}=p_{21} q_{11} \\
& a_{22}=p_{21} q_{12}+q_{22} \\
& a_{23}=p_{21} q_{13}+q_{23} \\
& a_{31}=p_{31} q_{11} \\
& a_{32}=p_{31} q_{12}+p_{32} q_{22} \\
& a_{33}=p_{31} q_{13}+p_{32} q_{23}+q_{33}
\end{aligned}
$$

- We can compute the elements of $\mathbf{P}$ and $\mathbf{Q}$ and store them directly into the old $\mathbf{A}$ matrix as the procedure progresses

$$
\mathbf{A}=\mathbf{P Q}
$$

where

$$
\begin{array}{lll}
\mathbf{P}=\text { lower triangular matrix } & \rightarrow & \text { rename } \mathbf{L} \\
\mathbf{Q}=\text { upper triangular matrix } & \rightarrow & \text { rename } \mathbf{U}
\end{array}
$$

- Therefore renaming these matrices

$$
\begin{aligned}
& \mathbf{P} \rightarrow \mathbf{L} \\
& \mathbf{Q} \rightarrow \mathbf{U}
\end{aligned}
$$

we note that $\mathbf{A}$ has been factored as

$$
\mathbf{A}=\mathbf{L} \mathbf{U}
$$

- Now considering the equation to be solved

$$
\mathbf{A} \boldsymbol{X}=\boldsymbol{B}
$$

- However $\mathbf{A}=\mathbf{L} \mathbf{U}$ where $\mathbf{L}$ and $\mathbf{U}$ are known

$$
(\mathbf{L U}) \boldsymbol{X}=\boldsymbol{B}
$$

## Forward/backward substitution procedures to obtain a solution

- Changing the order in which the product is formed

$$
\mathbf{L}(\mathbf{U} X)=B
$$

- Now let

$$
\boldsymbol{Y}=\mathbf{U} \boldsymbol{X}
$$

- Hence we have two systems of simultaneous equations

$$
\begin{aligned}
& \mathbf{L} Y=B \\
& \mathbf{U} X=Y
\end{aligned}
$$

- Apply a forward substitution sweep to solve for $Y$ for the system of equations

$$
\mathbf{L} Y=\boldsymbol{B}
$$

- Apply a backward substitution sweep to solve for $X$ for the system of equations

$$
\mathbf{U} X=Y
$$

## Notes on Factorization Methods

- Procedure
- Perform the factorization by solving for $\mathbf{L}$ and $\mathbf{U}$
- Perform the sequential forward and backward substitution procedures to solve for $\boldsymbol{Y}$ and $\boldsymbol{X}$
- The factor method is very similar to Gauss elimination although the order in which the operations are carried out is somewhat different.
- Number of operations
- $O\left(N^{3}\right)$ for $\mathbf{L} \mathbf{U}$ decomposition (same as triangulation for Gauss)
- $O\left(N^{2}\right)$ for forward/backward substitution (same as backward sweep for Gauss)


## Advantages of LU factorization over Gauss Elimination

- Can solve for any load vector $\boldsymbol{B}$ at any time with $O\left(N^{2}\right)$ operations (other than triangulation which is done only once with $O\left(N^{3}\right)$ operations)
- Generally has somewhat smaller roundoff error


## Example comparing costs

- If we are solving $R$ systems of $N \times N$ equations in which the matrix A stays the same and only the vector $\boldsymbol{B}$ changes, compare the overall costs for Gauss elimination and $\mathbf{L} \mathbf{U}$ factorization
- Gauss Elimination costs

$$
\begin{aligned}
& \text { Triangulation Cost }=R\left[O\left(N^{3}\right)\right] \\
& \text { Back Substitution Cost }=R\left[O\left(N^{2}\right)\right] \\
& \text { Total Cost }=R\left[O\left(N^{3}\right)+O\left(N^{2}\right)\right] \\
& \text { Total Cost for Large } N \cong R O\left(N^{3}\right)
\end{aligned}
$$

- LU factorization costs

$$
\begin{aligned}
& \text { LU Factorization Cost }=\left[O\left(N^{3}\right)\right] \\
& \text { Back/Forward Substitution Cost }=R\left[O\left(N^{2}\right)\right] \\
& \text { Total Cost }=\left[O\left(N^{3}\right)+R O\left(N^{2}\right)\right] \\
& \text { Total Cost for } R » N \cong R O\left(N^{2}\right)
\end{aligned}
$$

- Considering some typical values for $N$ and $R$

| $N$ | $R$ | Gauss Elim. | LU Factorization | Ratio of Costs |
| :---: | :---: | :---: | :---: | :---: |
| $N$ | $R$ | $O\left(R N^{3}\right)$ | $O\left(R N^{2}\right)$ | $O(N)$ |
| 1,000 | 5,000 | $5 \times 10^{12}$ | $5 \times 10^{9}$ | 1,000 |
| $10^{5}$ | $10^{6}$ | $10^{21}$ | $10^{16}$ | 100,000 |

- We can also implement $\mathbf{L} \mathbf{U}$ factorization (decomposition) in banded mode and the savings compared to banded Gauss elimination would be $O(M)$ (where $M=$ bandwidth)


## Other Factorization Methods for Symmetrical Matrices

- Solve $\mathbf{A} \boldsymbol{X}=\boldsymbol{B}$ assuming that $\mathbf{A}$ is symmetrical, i.e

$$
\mathbf{A}^{T}=\mathbf{A} \quad \text { or } \quad a_{i j}=a_{j i}
$$

## Cholesky Square Root Method

- Requires that $\mathbf{A}$ is symetrical $\left(\mathbf{A}^{T}=\mathbf{A}\right)$ and positive definite $\left(\mathbf{U}^{T} \mathbf{A} \mathbf{U}>c\right.$ where $\mathbf{U}=$ any vector and $c$ is a positive number.
- First step is to decompose the matrix $\mathbf{A}$

$$
\mathbf{A}=\mathbf{L} \mathbf{L}^{T} \quad \text { or } \quad \mathbf{A}=\mathbf{U}^{T} \mathbf{U}
$$

- Diagonal terms on $\mathbf{L}$ or $\mathbf{U}$ don't equal unity
- We note that A contains 6 independent entries and that $\mathbf{L}$ contains 6 unknowns and therefore we can perform the factorization

$$
\mathbf{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \quad \mathbf{L}=\left[\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]
$$

- Substituting the factored form of the matrix and changing the order in which products are taken

$$
\mathbf{L}\left(\mathbf{L}^{T} \boldsymbol{X}\right)=\boldsymbol{B}
$$

- Let $\mathbf{L}^{T} \boldsymbol{X}=\boldsymbol{Y}$ and substitute
- Now sequentially solve

$$
\mathbf{L} \boldsymbol{Y}=\boldsymbol{B} \quad \text { by forward substitution }
$$

$\mathbf{L}^{T} \boldsymbol{X}=\boldsymbol{Y}$ by backward substitution

## LDL $^{T}$ Method

- Decompose $\mathbf{A}=\mathbf{L D L}{ }^{T}$
- Where $\mathbf{L}$ is a lower triangular matrix
- Where $\mathbf{D}=$ diagonal matrix
- Set the diagonal terms of $\mathbf{L}$ to unity
- Solving for the elements of $\mathbf{L}$ and $\mathbf{D}$

$$
\mathbf{A}=\mathbf{L D L}^{T}
$$

- Substituting and changing the order in which the products are formed

$$
\mathbf{L}\left(\mathbf{D L}^{T} \boldsymbol{X}\right)=\boldsymbol{B}
$$

- Now let

$$
\mathbf{D L}^{T} \boldsymbol{X}=\boldsymbol{Y}
$$

- Now sequentially solve

$$
\begin{aligned}
& \mathbf{L} \boldsymbol{Y}=\boldsymbol{B} \quad \text { by forward substitution } \\
& \mathbf{L}^{T} \boldsymbol{X}=\mathbf{D}^{-1} \boldsymbol{Y} \text { by backward substitution }
\end{aligned}
$$

- Note that $\mathbf{D}^{-1}=1 /$ diagonal terms and are easily computed


## Computation of the Determinant for Factorization Methods

- Notes
- If $\quad \mathbf{A}=\mathbf{L} \mathbf{U} \quad \Rightarrow \quad|\mathbf{A}|=|\mathbf{L}||\mathbf{U}|$
- The determinant of a triangularized matrix equals the product of the diagonal terms
- In case of $\mathbf{L U}$ factorization

$$
\begin{array}{ll}
|\mathbf{A}|=\prod_{i=1}^{L V} l_{i i} & \text { (Crout) } \\
|\mathbf{A}|=\prod_{i=1}^{L v} u_{i i} & \text { (Doolittle) }
\end{array}
$$

- In case of $\mathbf{L D L}{ }^{T}$ decomposition

$$
|\mathbf{A}|=|\mathbf{D}|=\prod_{i=1} d_{i i}
$$

- For Gauss Elimination, simply keep a running product of the pivot elements.

