CE 30125 - Lecture 18

LECTURE 18

DIRECT SOLUTIONS TO LINEAR ALGEBRAIC SYSTEMS - CONTINUED

Ill-conditioning of Matrices

e There is no clear cut or precise definition of an ill-conditioned matrix.

Effects of ill-conditioning

e Roundoff error accrues in the calculations
e Can potentially result in very inaccurate solutions

e Small variation in matrix coefficients causes large variations in the solution

Detection of ill-conditioning in a matrix

e An inaccurate solution for X can satisfy an ill-conditioned matrix quite well!

» Apply back substitution to check for ill-conditioning

* Solve AX = B through Gauss or other direct method — X

poor

e Back substitute AX — B

poor poor

e Comparing we find that B, =B

poor ~
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» Back substitution is not a good detection technique.

* The effects of ill-conditioning are very subtle!

e Examine the inverse of matrix A

o If there are elements of A-! which are many orders of magnitude larger than the orig-
inal matrix, A, then A is probably ill-conditioned

* [t is always best to normalize the rows of the original matrix such that the maximum
magnitude is of order 1

» Evaluate A-! using the same method with which you are solving the system of equa-

tions. Now compute A-'A and compare the results to I. If there’s a significant devi-
ation, then the presence of serious roundoff exists!

e Compute (A-1)~! using the same method with which you are solving the system of
equations. This is a more severe test of roundoff since it is accumulated both in the
original inversion and the re-inversion.
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e Can also evaluate ill-conditioning by examining the normalized determinant. The
matrix may be ill-conditioned when:

detA

where

Euclidean Norm of A = Z Z a2

o If the matrix A is diagonally dominant, i.e. the absolute values of the diagonal terms
> the sum of the off-diagonal terms for each row, then the matrix is not ill-condi-
tioned

Al
‘aii|2 z ‘aij| i=12..N
j=1
1#7
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 Effects of ill-conditioning are most serious in large dense matrices (e.g. especially those
obtained in such problems as curve fitting by least squares)

» Sparse banded matrices which result from Finite Difference and Finite Element methods
are typically much better conditioned (i.e. can solve fairly large sets of equations
without excessive roundoff error problems)

* Ways to overcome ill-conditioning
* Make sure you pivot!
* Use large word size (use double precision)
* Can use error correction schemes to improve the accuracy of the answers

e Use iterative methods
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Factor Method (Cholesky Method)

e Problem with Gauss elimination

* Right hand side “load” vector, B, must be available at the time of matrix triangula-
tion

* If B is not available during the triangulation process, the entire triangulation process
must be repeated!

* Procedure is not well suited for solving problems in which B changes

AX =B, = O(N?) +O(N?) steps

AX =B, = O(N?) +O(N?) steps

AX = B, = O(N?*)+O(N?) steps

e Using Gauss elimination, O(N3R) operations, where N = size of the system of equa-
tion and R = the number of different load vectors which must be solved for

» Concept of the factor method is to facilitate the solution of multiple right hand sides
without having to go through a re-triangulation process for each B,
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Factorization step

e Given A, find P and Q such that

A = PQ

where A, P and Q are all N x N matrices

* We note that |A| #0 = |P||Q| # 0 and therefore neither P nor Q can be singular

ajp dpp dij P11 P2 P13 4911 4912 413
Ay) Ay Ap3| = |Pa1 Py P3| ® 4921 922 4923
431 43 dzj) P31 P32 P33 |931 4932 4933

* We can only have N2 unknowns!
* Define P as lower triangular

* Define Q as upper triangular

e Now we have N? + N unknowns
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* Reduce the number of unknowns by selecting either

*p,; =1 i =1,N = Doolittle Method

°q; =1 i =1,N = CroutMethod

* Now we only have N? unknowns! We can solve for all unknown elements of P and Q by
proceeding from left to right and top to bottom

ay ap dp L0 0 911 4912 413

ay; dy ay|=Pu 1 0/*l0 gy g

ay azp axp) [Pa Pn 1) [0 0 gy
_ - 411 q12 q13
dyjp A 4dp3
ap) Ay dy3z) = |P21411 P21912 v 42 P21913+ 4923
431 A3 dzg

P31911 P31912 t P324922 P314913 t P32923 + 433
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» Factorization proceeds from left to right and then top to bottom as:
e Red — current unknown being solved

* Blue — unknown value already solved

ap = 4qq
app = 4912
ajz = 413

Az = P41

Ay = Pr1912t 42

dyz = Pr1913 1 43

as; = P314911

Az = P31912 T P304

a3z = P31913 Y P32923 T 433
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* We can compute the elements of P and Q and store them directly into the old A matrix
as the procedure progresses

A = PQ
where
P = lower triangular matrix —  rename L

Q =upper triangular matrix —  rename U

e Therefore renaming these matrices

P—L
Q—-U
we note that A has been factored as

A =LU
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* Now considering the equation to be solved

AX = B
e However A = LU where LL and U are known

(LU)X = B

Forward/backward substitution procedures to obtain a solution

e Changing the order in which the product is formed

L(UX) = B

e Now let
Y = UX
* Hence we have two systems of simultaneous equations
LY =B

UX =Y
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* Apply a forward substitution sweep to solve for Y for the system of equations
LY =B
» Apply a backward substitution sweep to solve for X for the system of equations
UX =Y

Notes on Factorization Methods

e Procedure
 Perform the factorization by solving for L and U

 Perform the sequential forward and backward substitution procedures to solve for Y
and X

e The factor method is very similar to Gauss elimination although the order in which the
operations are carried out is somewhat different.

e Number of operations
e O(N3) for LU decomposition (same as triangulation for Gauss)

* O(N?) for forward/backward substitution (same as backward sweep for Gauss)
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Advantages of LU factorization over Gauss Elimination

 Can solve for any load vector B at any time with O(N?) operations (other than triangu-
lation which is done only once with O(N3) operations)

e Generally has somewhat smaller roundoff error

Example comparing costs

e If we are solving R systems of N x N equations in which the matrix A stays the same

and only the vector B changes, compare the overall costs for Gauss elimination and LU
factorization

¢ (Gauss Elimination costs

Triangulation Cost = R [O(N3)]
Back Substitution Cost = R[O(N?)]
Total Cost = R[O(N3) + O(N?)]

Total Cost for Large N = R O(N?)

p. 18.12



CE 30125

e LU factorization costs

LU Factorization Cost = [O(N3)]
Back/Forward Substitution Cost = R[O(N?)]
Total Cost = [O(N3) + R O(N?)]

Total Cost for R» N = R O(N?)

e Considering some typical values for N and R

- Lecture 18

N R Gauss Elim. LU Factorization Ratio of Costs

N R O(RN?) O(RN?) O(N)
1,000 5,000 5%x1012 5%x10° 1,000

10° 10° 102! 1016 100,000

e We can also implement LU factorization (decomposition) in banded mode and the
savings compared to banded Gauss elimination would be O(M) (where M = band-

width)
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Other Factorization Methods for Symmetrical Matrices

e Solve AX = B assuming that A is symmetrical, 1.e

AT = A or a.=a.

Cholesky Square Root Method

e Requires that A is symetrical (A" = A)and positive definite (U'AU > ¢ where U = any
vector and ¢ is a positive number.

* First step is to decompose the matrix A
A=LLT or A =UTU

e Diagonal terms on L. or U don’t equal unity
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* We note that A contains 6 independent entries and that L contains 6 unknowns and there-
fore we can perform the factorization

ajp A dps ly 00
A = la, ay dy3 L=\, 1, 0
| d31 d3p dzj) 31 I3 133

» Substituting the factored form of the matrix and changing the order in which products
are taken

L(L'X) = B

e Let L7X = Y and substitute

* Now sequentially solve
LY = B by forward substitution

L’X = Y by backward substitution
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LDL” Method

e Decompose A = LDLT

* Where L is a lower triangular matrix

* Where D = diagonal matrix

Set the diagonal terms of L to unity

Solving for the elements of L and D

A = LDLT

L(DL’X) =

Now let

DL’X = Y

Substituting and changing the order in which the products are formed

B
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* Now sequentially solve

LY = B by forward substitution

L’X = D-'Y by backward substitution

* Note that D-! = 1/diagonal terms and are easily computed
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Computation of the Determinant for Factorization Methods
* Notes

eIf A=LU = |[A| = |L[[U]

* The determinant of a triangularized matrix equals the product of the diagonal terms

e In case of LU factorization

A| = Hlii (Crout)
A| = Huii (Doolittle)

* In case of LDL” decomposition

‘A‘ = |D| = Hd,'l'

i=1
* For Gauss Elimination, simply keep a running product of the pivot elements.
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