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LECTURE 18

DIRECT SOLUTIONS TO LINEAR ALGEBRAIC SYSTEMS - CONTINUED

Ill-conditioning of Matrices

• There is no clear cut or precise definition of an ill-conditioned matrix.

Effects of ill-conditioning

• Roundoff error accrues in the calculations

• Can potentially result in very inaccurate solutions

• Small variation in matrix coefficients causes large variations in the solution

Detection of  ill-conditioning in a matrix

• An inaccurate solution for  can satisfy an ill-conditioned matrix quite well!

• Apply back substitution to check for ill-conditioning

• Solve  through Gauss or other direct method   

• Back substitute 

• Comparing we find that 

X

AX B=    Xpoor

AXpoor Bpoor

Bpoor B
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• Back substitution is not a good detection technique. 

• The effects of ill-conditioning are very subtle!

• Examine the inverse of matrix 

• If there are elements of  which are many orders of magnitude larger than the orig-
inal matrix, , then  is probably ill-conditioned

• It is always best to normalize the rows of the original matrix such that the maximum
magnitude is of order 1

• Evaluate  using the same method with which you are solving the system of equa-
tions. Now compute  and compare the results to . If there’s a significant devi-
ation, then the presence of serious roundoff exists!

• Compute  using the same method with which you are solving the system of
equations. This is a more severe test of roundoff since it is accumulated both in the
original inversion and the re-inversion.

A

A 1–

A A

A 1–

A 1– A I

A 1–  1–
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• Can also evaluate ill-conditioning by examining the normalized determinant. The
matrix may be ill-conditioned when:

   

where

Euclidean Norm of 

• If the matrix  is diagonally dominant, i.e. the absolute values of the diagonal terms
 the sum of the off-diagonal terms for each row, then the matrix is not ill-condi-

tioned
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• Effects of ill-conditioning are most serious in large dense matrices (e.g. especially those
obtained in such problems as curve fitting by least squares)

• Sparse banded matrices which result from Finite Difference and Finite Element methods
are typically much better conditioned (i.e. can solve fairly large sets of equations
without excessive roundoff error problems)

• Ways to overcome ill-conditioning

• Make sure you pivot!

• Use large word size (use double precision)

• Can use error correction schemes to improve the accuracy of the answers

• Use iterative methods
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Factor Method (Cholesky Method)

• Problem with Gauss elimination

• Right hand side “load” vector, , must be available at the time of matrix triangula-
tion

• If  is not available during the triangulation process, the entire triangulation process
must be repeated!

• Procedure is not well suited for solving problems in which  changes

      steps

      steps
  .                                .
  .                                .
  .                                .

      steps

• Using Gauss elimination,  operations, where  = size of the system of equa-
tion and  = the number of different load vectors which must be solved for

• Concept of the factor method is to facilitate the solution of multiple right hand sides
without having to go through a re-triangulation process for each 

B

B

B

AX B1= O N3  O N2 +

AX B2= O N3  O N2 +

AX BR= O N3  O N2 +

O N3R  N
R

Br
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Factorization step

• Given , find  and  such that

where ,    and  are all  matrices

• We note that    and therefore neither  nor  can be singular

• We can only have  unknowns!

• Define  as lower triangular

• Define  as upper triangular

• Now we have  unknowns

A P Q

A PQ=

A P Q N N

A 0 P Q 0 P Q

a11  a12  a13

a21  a22  a23

a31  a32  a33

p11  p12  p13

p21  p22  p23

p31  p32  p33

q11  q12  q13

q21  q22  q23

q31  q32  q33

=

N2

P

Q

N2 N+



CE 30125 - Lecture 18

p. 18.7

• Reduce the number of unknowns by selecting either

•                Doolittle Method

•                Crout Method

• Now we only have  unknowns! We can solve for all unknown elements of P and Q by
proceeding from left to right and top to bottom

pii 1= i 1 N=

qii 1= i 1 N=

N2

a11  a12  a13

a21  a22  a23

a31  a32  a33

1  0  0

p21  1  0

p31  p32  1

=

q11  q12  q13

0  q22  q23

0  0  q33



a11  a12  a13

a21  a22  a23

a31  a32  a33

q11  q12  q13

     

p21q11   p21q12 q22+  p21q13 q23+

     

p31q11            p31q12 p32q22+            p31q13 p32q23 q33+ +

=
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• Factorization proceeds from left to right and then top to bottom as:

• Red current unknown being solved

• Blue unknown value already solved

a11 q11=

a12 q12=

a13 q13=

a21 p21q11=

a22 p21q12 q22+=

a23 p21q13 q23+=

a31 p31q11=

a32 p31q12 p32q22+=

a33 p31q13 p32q23 q33+ +=
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• We can compute the elements of  and  and store them directly into the old  matrix
as the procedure progresses

where

 = lower triangular matrix         rename 

 = upper triangular matrix         rename 

• Therefore renaming these matrices 

     we note that A has been factored as 

P Q A

A PQ=

P L

Q U

P L

Q U

A LU=
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• Now considering the equation to be solved

• However  where  and  are known

Forward/backward substitution procedures to obtain a solution

• Changing the order in which the product is formed

• Now let 

 

• Hence we have two systems of simultaneous equations

AX B=

A LU= L U

LU X B=

L UX  B=

Y UX=

LY B=

UX Y=
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• Apply a forward substitution sweep to solve for  for the system of equations

• Apply a backward substitution sweep to solve for  for the system of equations

Notes on Factorization Methods

• Procedure

• Perform the factorization by solving for  and  

• Perform the sequential forward and backward substitution procedures to solve for 
and  

• The factor method is very similar to Gauss elimination although the order in which the
operations are carried out is somewhat different.

• Number of operations

•  for  decomposition (same as triangulation for Gauss)

•  for forward/backward substitution (same as backward sweep for Gauss)

Y

LY B=

X

UX Y=

L U

Y
X

O N3  LU

O N2 
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Advantages of LU factorization over Gauss Elimination

• Can solve for any load vector  at any time with  operations (other than triangu-
lation which is done only  once with  operations)

• Generally has somewhat smaller roundoff error

Example comparing costs

• If we are solving  systems of  equations in which the matrix  stays the same
and only the vector  changes, compare the overall costs for Gauss elimination and 
factorization

• Gauss Elimination costs

Triangulation Cost =    

Back Substitution Cost =    

Total Cost = 

Total Cost for Large       

B O N2 
O N3 

R N N A
B LU

R O N3  

R O N2  

R O N3  O N2 + 

N   R O N3 



CE 30125 - Lecture 18

p. 18.13

•  factorization costs

 Factorization Cost =    

Back/Forward Substitution Cost =    

Total Cost = 

Total Cost for       

• Considering some typical values for N and R

• We can also implement  factorization (decomposition) in banded mode and the
savings compared to banded Gauss elimination would be  (where  = band-
width)

Gauss Elim. LU Factorization Ratio of Costs

1,000 5,000 5x1012 5x109 1,000

105 106 1021 1016 100,000

LU

LU O N3  

R O N2  

O N3  R O N2 + 

R N»   R O N2 

N R

N R O RN
3  O RN

2  O N 

LU
O M  M



CE 30125 - Lecture 18

p. 18.14

Other Factorization Methods for Symmetrical Matrices

• Solve  assuming that A is symmetrical, i.e

     or    

Cholesky Square Root Method

• Requires that  is symetrical ( ) and positive definite (  where  = any
vector and  is a positive number.

• First step is to decompose the matrix 

    or    

• Diagonal terms on  or  don’t equal unity

AX B=

AT A= aij aji=

A AT A= UTAU c U
c

A

A LLT= A UTU=

L U
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• We note that A contains 6 independent entries and that L contains 6 unknowns and there-
fore we can perform the factorization

         

• Substituting the factored form of the matrix and changing the order in which products
are taken

• Let  and substitute

• Now sequentially solve

      by forward substitution

    by backward substitution

A

a11  a12  a13

a21 a22 a23

a31 a32 a33

= L

l11  0  0

l21  l22  0

l31  l32  l33

=

L LTX  B=

LTX Y=

LY B=

LTX Y=
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LDLT Method___________

• Decompose 

• Where  is a lower triangular matrix

• Where  = diagonal matrix

• Set the diagonal terms of  to unity

• Solving for the elements of  and  

 

• Substituting and changing the order in which the products are formed

• Now let

A LDLT=

L

D

L

L D

A LDLT=

L DLTX  B=

DLTX Y=
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• Now sequentially solve 

    by forward substitution

    by backward substitution

• Note that  = 1/diagonal terms and are easily computed

LY B=

LTX D 1– Y=

D 1–
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Computation of the Determinant for Factorization Methods

• Notes

• If    

• The determinant of a triangularized matrix equals the product of the diagonal terms 

• In case of  factorization

      (Crout)

      (Doolittle)

• In case of  decomposition

• For Gauss Elimination, simply keep a running product of the pivot elements.

A LU        A L U= =

LU

A lii
i 1=

N

=

A uii

i 1=

N

=

LDLT

A D dii

i 1=

N

= =


