CE 30125 - Lecture 19

LECTURE 19

ITERATIVE SOLUTIONS TO LINEAR ALGEBRAIC EQUATIONS

» As finer discretizations are being applied with Finite Difference and Finite Element
codes:

* Matrices are becoming increasingly larger

* Density of matrices is becoming increasingly smaller

® Banded storage direct solution algorithms no longer remain attractive as solvers for
very large systems of simultaneous equations

p. 19.1

CE 30125 - Lecture 19

Example

 For a typical Finite Difference or Finite Element code, the resulting algebraic equations

have between 5 and 10 nonzero entries per matrix row (i.e. per algebraic equation asso-

ciated with each node)

O O O O O O OO Wk P ok w >
OO OO O OO WO OO W -
OO OO OO WO OO W O
OO O OO0 WO OO W o O
OO OO WO OO W O OO
O OO WO OO W o O o T3
OO WO O OoOWw >N OoO oo 3o
S WO O OoOWwWw > OoO OO 3o o
WO O oW 20O OO o o o
O OO W 2O OO O o oo
SO O >N O OO O o o oo
S wW >0 O OO T o oo o o o
0w >0 O OO T O oo oo oo
>0 b b b 3o oo oo oo o

Il

<«

p. 19.2

CE 30125 - Lecture 19

* Banded compact matrix density

* Storage required for banded compact storage mode equals NM where N = size of the
matrix, and M = full bandwidth

» Total nonzero entries in the matrix assuming (a typical estimate of) 5 non-zero
entries per matrix row = SN

* Banded compact matrix density = the ratio of actual nonzero entries to entries stored
in banded compact mode

Banded compact matrix density = Actbéczlnréoezzstraorjgéries =]3]1‘\; = l\i/l
N M Compact Matrix Density
100 20 0.25
10,000 200 0.025
10° 2,000 0.0025
25x10° 10,000 0.0005

* Thus with the increasing size of problems/applications and the decreasing matrix densi-
ties, iterative methods are becoming increasingly popular/better alternatives!

p.19.3

CE 30125 - Lecture 19

(Point) Jacobi Method - An Iterative Method

e Let’s consider the following set of algebraic equations
ay Xy +apX, +apxy = b
Ay Xy + apXy +axXy = b,y
a3 Xy +azpXy +azxy = by

e Guess a set of values for X — X101

e Now solve each equation for unknowns which correspond to the diagonal terms in A,
using guessed values for all other unknowns:

by - “12)@0J - al3x£OJ

ajg

x|l =

b, - azlx‘OJ - az3x£OJ

1] —
x£ %)

_ 0] _ 0]
Xgl] _ b3 a31x‘ Cl32X£

dss3

p. 19.4

CE 30125 - Lecture 19

Arrive at a second estimate — X!

Continue procedure until you reach convergence (by comparing results of 2 consecutive
terations)

This method is referred to as the (Point) Jacobi Method

The (Point) Jacobi Method is formally described in vector notation as follows:
* Define A as
A=D-C

e Such that all diagonal elements of A are put into D

* Such that all off-diagonal elements of A are put into — C
* The scheme is now defined as:

DXk+11 = CXkl + B k20 =

Xlk+11 = p-1CX*1 + D-1B k>0

 Recall that inversion of a diagonal matrix (to find D-!) is obtained simply by
taking the reciprocal of each diagonal term

p.19.5

CE 30125 - Lecture 19

e The (Point) Jacobi Method method can be described in index notation as:

» Advantage of iterative methods:
* Each cycle O(N?) operations for full storage mode

* Therefore roundoff error only accrues during O(N?) operations! This is much better
than direct methods in which O(N3) operations accrue much more error!

* Since each cycle only produces an approximation for the next cycle, any error in a
guess will be handled by the next cycle

* We can consider roundoff error to accrue only during the last iteration

e Algorithm can be readily implemented to operate only on non-zero entries in the
matrix reducing both storage and computations dramatically when matrix density is
low

p. 19.6

CE 30125 - Lecture 19
» Total number of operations for full storage mode

O(N?K) where K = number of cycles required for convergence

* Note that you don’t a priori know the number of cycles, K, required to achieve a
certain degree of convergence and therefore accuracy

» Total number of operations for sparse non-zero entry only storage mode

O(NoK) where o = number of non zero entries per equation
K = number of cycles required for convergence

* The operation count dramatically reduces for sparse storage modes and is only a
function of the number of non-zero entries and the number of cycles. Note that o 1s
not related to the size of the problem, N, but to the local grid structure and algorithm

* [terative methods are ideally suited for

* Very large matrices since they reduce the roundoff problem

» Sparse but not banded matrices since they can reduce computational effort by not
operating on zeroes

* Very large sparse banded matrices due to efficiency

p- 19.7

CE 30125 - Lecture 19

Example

* Solve by point Jacobi method:

Sx+y =10
2x+3y = 4

{5x[k+ 1= 10 - ylkl

=
3ylk+1l = 4 _2xlkl
NIV SN
5
4 2
[k+1] = 2 _ Zxlk]
Y 373
o Start with solution guess x[0 = -1, yl01 = _1 and start iterating on the solution

p.19.8

k k] yIk

0 -1 -1

1 2.20000 2.00000
2 1.60000 -0.13333
3 2.026666 0.26666
4 1.94666 -0.01777
5 2.00355 0.03555

CE 30125 - Lecture 19

» This is a converging process — keep on going until the desired level of accuracy is

achieved

k]

yl&]

2.00000

0.00000

p. 19.9

CE 30125 - Lecture 19

Iterative convergence

e Is the (k+ 1) solution better than the k** solution?

» [terative process can be convergent/divergent

* A necessary conditions for convergence is that the set be diagonal.

* This requires that one of the coefficients in each of the equations be greater than all
others and that this “strong coefficient” be contained in a different position in each
equation.

* We can re-arrange all strong elements onto diagonal positions by switching columns
— this now makes the matrix diagonal.

A sufficient condition to ensure convergence is that the matrix is diagonally dominant

, i=1,N

N
;| > > a;j

Jj=1
i#j

e There are less stringent conditions for convergence

p. 19.10

CE 30125 - Lecture 19

» A poor first guess will prolong the iterative process but will not make it diverge if the
matrix is such that convergence is assured.

» Therefore better guesses will speed up the iterative process

Criteria for ascertaining convergence

» Absolute convergence criteria
[k 1— K| <e for i=1,N

* Where € = a user specified tolerance or accuracy

* The absolute convergence criteria is best used if you have a good idea of the magni-
tude of the x; ‘s

* Relative convergence criteria

xlk+ 11— x[K]

X[

<€

e This criteria is best used if the magnitude of the x; ‘s are not known.

* There are also problems with this criteria if x, =0

p. 19.11

CE 30125 - Lecture 19

(Point) Gauss Seidel Method

This method is very similar to the Jacobi method except that Gauss Seidel uses the most
recently computed values for X in its computations.

Using all updated values of X increases the convergence rate (twice as fast as Jacobi)

Consider the system
ap Xy +appXy +apx; = by

Ay X1 + AxXy + dx3Xy = by

A31X] + A3pXy + d33x3 = by

Solve for the unknowns associated with diagonal terms as follows

by - alzxy<J - “13’“%1<J

xfkr 1l = -
11
k+1] _ by — ayxff 1 —ayxlt]
. ,
22
X£k+1] _ b3_a31xllk+”_a32x£k+”

Qi3

p. 19.12

CE 30125 - Lecture 19

» The Gauss Seidel method is formally described in vector form as
 Define A as
A=D-L-U
 Put diagonal elements of A into D
 Put negative of elements of A below the diagonal into L

 Put negative of elements of A above the diagonal into U
* Scheme is then defined as:

DX+ = Lxk+11 4 XK+ B, k>0 =

Xlk+11 = p-lLxlk+11 4+ D-lUXIKl + D-'B |, k=0

* The Gauss Seidel method is formally described using index notation as

p. 19.13

CE 30125 - Lecture 19

Point Relaxation Methods (Successive/Systematic (Over) Relaxation - SOR)

» The SOR approach improves the calculated values at the k + 17 iteration using Gauss-

Seidel by calculating a weighted average of the £ and k + 17" iterations and using this
for the next iteration

xlEH D = Qolk+ 1T 4 (1 — A)x [l

* Where x[k+11* is the value obtained from the current Gauss-Seidel iteration

e) is the relaxation factor which must be specified

e Ranges of A values
e) ranges between 0<A <2
A =1 — Gauss-Seidel
*0<A<1 — Under-relaxation

e 1<A<2 — Over-relaxation

p. 19.14

CE 30125 - Lecture 19

e Under-relaxation — 0<A<1

* The current value is a weighted average of current Gauss-Seidel value and the
value from the previous iteration

* Typically used to make a non-convergent process converge

* Can also be useful in speeding up convergence when the solutions oscillate about
the converged solution

[k]
Aj

* Over-relaxation — 1<Ai<2
 The current value is extrapolated beyond the Gauss-Seidel value
* Typically used to accelerate an already convergent process

e For A > 2, the process diverges

* For a diagonally dominant matrix, SOR will always converge for 0 <A <2

p. 19.15

CE 30125 - Lecture 19

» Selection of an optimal A value is quite complex
* Depends on the characteristics of the matrix
* Certain “classes” of problems will have optimal ranges

e Trial and error is very useful

* We can apply different values of A for different blocks within a matrix which exhibit
significantly different characteristics (different blocks in matrix may be associated
with different p.d.e.’s in a coupled system)

Application of Gauss-Seidel to Non-Linear Equations

* Gauss-Seidel (with relaxation) is a very popular method to solve for systems of
nonlinear equations

* Notes:
e Multiple solutions exist for nonlinear equations

* There must be linear components included in the equations such that a diagonal is
formed

» No general theory on iterative convergence is available for nonlinear equations

p. 19.16

CE 30125 - Lecture 19

Block Iterative Methods

* Instead of operating on a point by point basis, we solve simultaneously for entire groups
of unknowns using direct methods

e Partition the coefficient matrix into blocks. All elements in the block are then solved in
one step using a direct method

Direct/Iterative Methods

[k+1]

a[k]
(D)) = @ - [Q
f—

[k+1] [k]
| @y
(5)

e Can correct errors due to roundoff in direct solutions by applying an iterative solution
after the direct solution has been implemented.

p. 19.17

