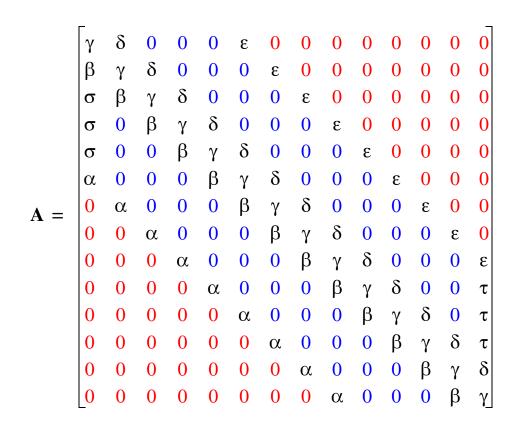
LECTURE 19

ITERATIVE SOLUTIONS TO LINEAR ALGEBRAIC EQUATIONS

- As finer discretizations are being applied with Finite Difference and Finite Element codes:
 - Matrices are becoming increasingly larger
 - Density of matrices is becoming increasingly smaller
- Banded storage direct solution algorithms no longer remain attractive as solvers for very large systems of simultaneous equations

Example

• For a typical Finite Difference or Finite Element code, the resulting algebraic equations have between 5 and 10 nonzero entries per matrix row (i.e. per algebraic equation associated with each node)



- Banded compact matrix density
 - *Storage* required for *banded compact storage mode* equals *NM* where *N* = size of the matrix, and *M* = full bandwidth
 - *Total nonzero entries in the matrix* assuming (a typical estimate of) 5 non-zero entries per matrix row = 5N
 - Banded compact matrix density = the ratio of actual nonzero entries to entries stored in banded compact mode

Banded compact matrix density
$$= \frac{Actual \ nonzero \ entries}{Banded \ storage} = \frac{5N}{NM} = \frac{5}{M}$$

N	М	Compact Matrix Density
100	20	0.25
10,000	200	0.025
10 ⁶	2,000	0.0025
25×10 ⁶	10,000	0.0005

• Thus with the increasing size of problems/applications and the decreasing matrix densities, iterative methods are becoming increasingly popular/better alternatives!

(Point) Jacobi Method - An Iterative Method

• Let's consider the following set of algebraic equations

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

- Guess a set of values for $X \rightarrow X^{[0]}$
- Now solve each equation for unknowns which correspond to the diagonal terms in A, using guessed values for all other unknowns:

$$x_{1}^{[1]} = \frac{b_{1} - a_{12}x_{2}^{[0]} - a_{13}x_{3}^{[0]}}{a_{11}}$$
$$x_{2}^{[1]} = \frac{b_{2} - a_{21}x_{1}^{[0]} - a_{23}x_{3}^{[0]}}{a_{22}}$$
$$x_{3}^{[1]} = \frac{b_{3} - a_{31}x_{1}^{[0]} - a_{32}x_{2}^{[0]}}{a_{33}}$$

- Arrive at a second estimate $\rightarrow X^{[1]}$
- Continue procedure until you reach convergence (by comparing results of 2 consecutive iterations)
- This method is referred to as the (Point) Jacobi Method
- The (*Point*) Jacobi Method is formally described in vector notation as follows:
 - Define A as

$\mathbf{A} = \mathbf{D} - \mathbf{C}$

- Such that all diagonal elements of A are put into D
- Such that all off-diagonal elements of A are put into C
- The scheme is now defined as:

$$\mathbf{D} \mathbf{X}^{[k+1]} = \mathbf{C} \mathbf{X}^{[k]} + \mathbf{B} \qquad k \ge 0 \quad \Rightarrow$$

$$X^{[k+1]} = \mathbf{D}^{-1}\mathbf{C}X^{[k]} + \mathbf{D}^{-1}\mathbf{B}$$
 $k \ge 0$

• Recall that inversion of a diagonal matrix (to find D^{-1}) is obtained simply by taking the reciprocal of each diagonal term

• The (*Point*) *Jacobi Method* method can be described in index notation as:

$$x_{i}^{[k+1]} = -\sum_{i=1, i \neq i}^{N} \frac{(a_{ij})}{(a_{ii})} x_{j}^{[k]} + \frac{b_{i}}{a_{ii}} \qquad 1 \le i \le N, \quad k \ge 0$$

- Advantage of iterative methods:
 - Each cycle $O(N^2)$ operations for full storage mode
 - Therefore roundoff error only accrues during $O(N^2)$ operations! This is much better than direct methods in which $O(N^3)$ operations accrue much more error!
 - Since each cycle only produces an approximation for the next cycle, any error in a guess will be handled by the next cycle
 - We can consider roundoff error to accrue only during the *last* iteration
 - Algorithm can be readily implemented to operate only on non-zero entries in the matrix reducing both storage and computations dramatically when matrix density is low

• Total number of operations for full storage mode

 $O(N^2K)$ where K = number of cycles required for convergence

- Note that you don't a priori know the number of cycles, *K*, required to achieve a certain degree of convergence and therefore accuracy
- Total number of operations for sparse non-zero entry only storage mode

 $O(N\alpha K)$ where α = number of non zero entries per equation

K = number of cycles required for convergence

- The operation count dramatically reduces for sparse storage modes and is only a function of the number of non-zero entries and the number of cycles. Note that α is not related to the size of the problem, *N*, but to the local grid structure and algorithm
- Iterative methods are ideally suited for
 - Very large matrices since they reduce the roundoff problem
 - Sparse but not banded matrices since they can reduce computational effort by not operating on zeroes
 - Very large sparse banded matrices due to efficiency

<u>Example</u>

• Solve by point Jacobi method:

$$\begin{cases} 5x + y = 10\\ 2x + 3y = 4 \end{cases} \Rightarrow$$
$$\int 5x^{[k+1]} = 10 - y^{[k]}$$

$$\begin{cases} 3x^{[k+1]} = 4 - 2x^{[k]} \end{cases} \Rightarrow$$

$$\begin{cases} x^{[k+1]} = 2 - \frac{1}{5} y^{[k]} \\ y^{[k+1]} = \frac{4}{3} - \frac{2}{3} x^{[k]} \end{cases}$$

• Start with solution guess $x^{[0]} = -1$, $y^{[0]} = -1$ and start iterating on the solution

k	$x^{[k]}$	y ^[k]
0	-1	-1
1	2.20000	2.00000
2	1.60000	-0.13333
3	2.026666	0.26666
4	1.94666	-0.01777
5	2.00355	0.03555
:	:	:

• This is a converging process \rightarrow keep on going until the desired level of accuracy is achieved

k	$x^{[k]}$	<i>y</i> ^[<i>k</i>]
:	:	:
	2.00000	0.00000

Iterative convergence

- Is the $(k+1)^{th}$ solution better than the k^{th} solution?
 - Iterative process can be convergent/divergent
- A *necessary* conditions for convergence is that the set be *diagonal*.
 - This requires that one of the coefficients in each of the equations be greater than all others and that this "strong coefficient" be contained in a different position in each equation.
 - We can re-arrange all strong elements onto diagonal positions by switching columns → this now makes the matrix *diagonal*.
- A sufficient condition to ensure convergence is that the matrix is diagonally dominant

$$|a_{ii}| > \sum_{\substack{j = 1 \ i \neq j}}^{N} |a_{ij}|, \quad i = 1, N$$

• There are less stringent conditions for convergence

- A poor first guess will prolong the iterative process but will not make it diverge if the matrix is such that convergence is assured.
 - Therefore better guesses will speed up the iterative process

Criteria for ascertaining convergence

• Absolute convergence criteria

$$\left|x_{i}^{[k+1]} - x_{i}^{[k]}\right| \le \varepsilon \quad \text{for} \quad i = 1, N$$

- Where $\varepsilon \equiv$ a user specified tolerance or accuracy
- The absolute convergence criteria is best used if you have a good idea of the magnitude of the x_i 's
- *Relative* convergence criteria

$$\left|\frac{x_i^{[k+1]} - x_i^{[k]}}{x_i^{[k]}}\right| \le \varepsilon$$

- This criteria is best used if the magnitude of the x_i 's are not known.
- There are also problems with this criteria if $x_i \ge 0$

(Point) Gauss Seidel Method

- This method is very similar to the *Jacobi* method except that *Gauss Seidel* uses the most recently computed values for *X* in its computations.
- Using all updated values of X increases the convergence rate (twice as fast as *Jacobi*)
- Consider the system

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

• Solve for the unknowns associated with diagonal terms as follows

$$x_{1}^{[k+1]} = \frac{b_{1} - a_{12}x_{2}^{[k]} - a_{13}x_{3}^{[k]}}{a_{11}}$$
$$x_{2}^{[k+1]} = \frac{b_{2} - a_{21}x_{1}^{[k+1]} - a_{23}x_{3}^{[k]}}{a_{22}}$$
$$x_{3}^{[k+1]} = \frac{b_{3} - a_{31}x_{1}^{[k+1]} - a_{32}x_{2}^{[k+1]}}{a_{33}}$$

- The Gauss Seidel method is formally described in vector form as
 - Define A as

$\mathbf{A} = \mathbf{D} - \mathbf{L} - \mathbf{U}$

- Put diagonal elements of A into D
- Put negative of elements of A below the diagonal into L
- Put negative of elements of A above the diagonal into U
- Scheme is then defined as:

$$\mathbf{D}\mathbf{X}^{[k+1]} = \mathbf{L}\mathbf{X}^{[k+1]} + \mathbf{U}\mathbf{X}^{[k]} + \mathbf{B} , \qquad k \ge 0 \qquad \Rightarrow$$

$$X^{[k+1]} = \mathbf{D}^{-1}\mathbf{L}X^{[k+1]} + \mathbf{D}^{-1}\mathbf{U}X^{[k]} + \mathbf{D}^{-1}\mathbf{B}$$
, $k \ge 0$

• The Gauss Seidel method is formally described using index notation as

$$x_{i}^{[k+1]} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_{j}^{[k+1]} - \sum_{j=i+1}^{N} \frac{a_{ij}}{a_{ii}} x_{j}^{[k]} + \frac{b_{i}}{a_{ii}}, \quad 1 \le i \le N, \quad k \ge 0$$

Point Relaxation Methods (Successive/Systematic (Over) Relaxation - SOR)

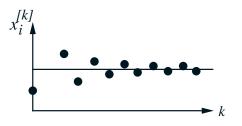
• The *SOR* approach improves the calculated values at the $k + 1^{th}$ iteration using *Gauss-Seidel* by calculating a weighted average of the k^{th} and $k + 1^{th}$ iterations and using this for the next iteration

$$x_i^{[k+1]} = \lambda x_i^{[k+1]*} + (1-\lambda) x_i^{[k]}$$

- Where $x_i^{[k+1]*}$ is the value obtained from the current *Gauss-Seidel* iteration
- λ is the relaxation factor which must be specified
- Ranges of λ values
 - λ ranges between $0 < \lambda < 2$
 - $\lambda = 1 \rightarrow Gauss-Seidel$
 - $0 < \lambda < 1 \rightarrow Under-relaxation$
 - $1 < \lambda < 2 \rightarrow Over-relaxation$

• Under-relaxation $\rightarrow 0 < \lambda < 1$

- The current value is a weighted average of current *Gauss-Seidel* value and the value from the previous iteration
- Typically used to make a non-convergent process converge
- Can also be useful in speeding up convergence when the solutions oscillate about the converged solution



- **Over-relaxation** $\rightarrow 1 < \lambda < 2$
 - The current value is extrapolated beyond the Gauss-Seidel value
 - Typically used to accelerate an already convergent process
 - For $\lambda > 2$, the process diverges
- For a diagonally dominant matrix, *SOR* will always converge for $0 < \lambda < 2$

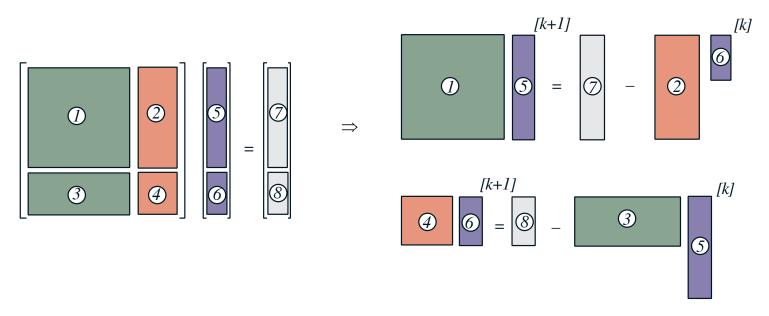
- Selection of an optimal λ value is quite complex
 - Depends on the characteristics of the matrix
 - Certain "classes" of problems will have optimal ranges
 - Trial and error is very useful
 - We can apply different values of λ for different blocks within a matrix which exhibit significantly different characteristics (different blocks in matrix may be associated with different p.d.e.'s in a coupled system)

Application of Gauss-Seidel to Non-Linear Equations

- *Gauss-Seidel (with relaxation)* is a very popular method to solve for systems of nonlinear equations
- Notes:
 - Multiple solutions exist for nonlinear equations
 - There *must* be linear components included in the equations such that a diagonal is formed
- No general theory on iterative convergence is available for nonlinear equations

Block Iterative Methods

- Instead of operating on a point by point basis, we solve simultaneously for entire groups of unknowns using direct methods
- Partition the coefficient matrix into blocks. All elements in the block are then solved in one step using a direct method



Direct/Iterative Methods

• Can correct errors due to roundoff in direct solutions by applying an iterative solution after the direct solution has been implemented.