
CE 30125 - Lecture 19

p. 19.1

LECTURE 19

ITERATIVE SOLUTIONS TO LINEAR ALGEBRAIC EQUATIONS

• As finer discretizations are being applied with Finite Difference and Finite Element
codes:

• Matrices are becoming increasingly larger

• Density of matrices is becoming increasingly smaller

• Banded storage direct solution algorithms no longer remain attractive as solvers for
very large systems of simultaneous equations

CE 30125 - Lecture 19

p. 19.2

Example

• For a typical Finite Difference or Finite Element code, the resulting algebraic equations
have between 5 and 10 nonzero entries per matrix row (i.e. per algebraic equation asso-
ciated with each node)

 = A

  0 0 0  0 0 0 0 0 0 0 0

   0 0 0  0 0 0 0 0 0 0

    0 0 0  0 0 0 0 0 0

 0    0 0 0  0 0 0 0 0

 0 0    0 0 0  0 0 0 0

 0 0 0    0 0 0  0 0 0

0  0 0 0    0 0 0  0 0

0 0  0 0 0    0 0 0  0

0 0 0  0 0 0    0 0 0 
0 0 0 0  0 0 0    0 0 
0 0 0 0 0  0 0 0    0 
0 0 0 0 0 0  0 0 0    
0 0 0 0 0 0 0  0 0 0   
0 0 0 0 0 0 0 0  0 0 0  

CE 30125 - Lecture 19

p. 19.3

• Banded compact matrix density

• Storage required for banded compact storage mode equals NM where N = size of the
matrix, and M = full bandwidth

• Total nonzero entries in the matrix assuming (a typical estimate of) 5 non-zero
entries per matrix row = 5N

• Banded compact matrix density = the ratio of actual nonzero entries to entries stored
in banded compact mode

Banded compact matrix density

• Thus with the increasing size of problems/applications and the decreasing matrix densi-
ties, iterative methods are becoming increasingly popular/better alternatives!

N M Compact Matrix Density

100 20 0.25

10,000 200 0.025

106 2,000 0.0025

25106 10,000 0.0005

Actual nonzero entries

Banded storage

5N
NM

5
M
-----= = =

CE 30125 - Lecture 19

p. 19.4

(Point) Jacobi Method - An Iterative Method

• Let’s consider the following set of algebraic equations

• Guess a set of values for

• Now solve each equation for unknowns which correspond to the diagonal terms in ,
using guessed values for all other unknowns:

a11x1 a12x2 a13x3+ + b1=

a21x1 a22x2 a23x3+ + b2=

a31x1 a32x2 a33x3+ + b3=

X X 0 

A

x1
1 

b1 a12x2
0  a13x3

0 ––

a11
---=

x2
1 

b2 a21x1
0 – a23x3

0 –

a22
---=

x3
1 

b3 a31x1
0 – a32x2

0 –

a33
---=

CE 30125 - Lecture 19

p. 19.5

• Arrive at a second estimate 

• Continue procedure until you reach convergence (by comparing results of 2 consecutive
iterations)

• This method is referred to as the (Point) Jacobi Method

• The (Point) Jacobi Method is formally described in vector notation as follows:

• Define A as

• Such that all diagonal elements of A are put into D

• Such that all off-diagonal elements of A are put into

• The scheme is now defined as:

 

• Recall that inversion of a diagonal matrix (to find) is obtained simply by
taking the reciprocal of each diagonal term

X 1 

A D C–=

 C–

DX k 1+  CX k  B+= k 0

X k 1+  D 1– CX k  D 1– B+= k 0

D 1–

CE 30125 - Lecture 19

p. 19.6

• The (Point) Jacobi Method method can be described in index notation as:

 ,

• Advantage of iterative methods:

• Each cycle operations for full storage mode

• Therefore roundoff error only accrues during operations! This is much better
than direct methods in which operations accrue much more error!

• Since each cycle only produces an approximation for the next cycle, any error in a
guess will be handled by the next cycle

• We can consider roundoff error to accrue only during the last iteration

• Algorithm can be readily implemented to operate only on non-zero entries in the
matrix reducing both storage and computations dramatically when matrix density is
low

xi
k 1+ 

aij 
aii 

----------xj
k 

j 1 j i=

N

–
bi

aii
------+= 1 i N  k 0

O N2 

O N2 
O N3 

CE 30125 - Lecture 19

p. 19.7

• Total number of operations for full storage mode

 where = number of cycles required for convergence

• Note that you don’t a priori know the number of cycles, , required to achieve a
certain degree of convergence and therefore accuracy

• Total number of operations for sparse non-zero entry only storage mode

 where = number of non zero entries per equation

 = number of cycles required for convergence

• The operation count dramatically reduces for sparse storage modes and is only a
function of the number of non-zero entries and the number of cycles. Note that is
not related to the size of the problem, N, but to the local grid structure and algorithm

• Iterative methods are ideally suited for

• Very large matrices since they reduce the roundoff problem

• Sparse but not banded matrices since they can reduce computational effort by not
operating on zeroes

• Very large sparse banded matrices due to efficiency

O N2K  K

K

O NK  

K



CE 30125 - Lecture 19

p. 19.8

Example

• Solve by point Jacobi method:

 

 

• Start with solution guess , and start iterating on the solution

5x y+ 10=

2x 3y+ 4=



5x k 1+  10 y k –=

3y k 1+  4= 2x k –



x k 1+  2
1
5
---y k –=

y k 1+  4
3

2
3
---x k –=






x 0  1–= y 0  1–=

CE 30125 - Lecture 19

p. 19.9

• This is a converging process keep on going until the desired level of accuracy is
achieved

0 -1 -1

1 2.20000 2.00000

2 1.60000 -0.13333

3 2.026666 0.26666

4 1.94666 -0.01777

5 2.00355 0.03555

: : :

: : :

2.00000 0.00000

k x k  y k 

 

k x k  y k 

CE 30125 - Lecture 19

p. 19.10

Iterative convergence

• Is the solution better than the solution?

• Iterative process can be convergent/divergent

• A necessary conditions for convergence is that the set be diagonal.

• This requires that one of the coefficients in each of the equations be greater than all
others and that this “strong coefficient” be contained in a different position in each
equation.

• We can re-arrange all strong elements onto diagonal positions by switching columns
this now makes the matrix diagonal.

• A sufficient condition to ensure convergence is that the matrix is diagonally dominant

,

• There are less stringent conditions for convergence

k 1+ th kth

aii aij

j 1=
i j

N

 i 1 N=

CE 30125 - Lecture 19

p. 19.11

• A poor first guess will prolong the iterative process but will not make it diverge if the
matrix is such that convergence is assured.

• Therefore better guesses will speed up the iterative process

Criteria for ascertaining convergence

• Absolute convergence criteria

 for

• Where a user specified tolerance or accuracy

• The absolute convergence criteria is best used if you have a good idea of the magni-
tude of the ‘s

• Relative convergence criteria

• This criteria is best used if the magnitude of the ‘s are not known.

• There are also problems with this criteria if

xi
k 1+  xi

k –  i 1 N=

 

xi

xi
k 1+  xi

k –

xi
k ------------------------------ 

xi

xi 0

CE 30125 - Lecture 19

p. 19.12

(Point) Gauss Seidel Method

• This method is very similar to the Jacobi method except that Gauss Seidel uses the most
recently computed values for in its computations.

• Using all updated values of increases the convergence rate (twice as fast as Jacobi)

• Consider the system

• Solve for the unknowns associated with diagonal terms as follows

X

X

a11x1 a12x2 a13x3+ + b1=

a21x1 a22x2 a23x3+ + b2=

a31x1 a32x2 a33x3+ + b3=

x1
k 1+ 

b1 a12x2
k – a13x3

k –

a11
---=

x2
k 1+ 

b2 a21x1
k 1+ – a23x3

k –

a22
--=

x3
k 1+ 

b3 a31x1
k 1+ – a32x2

k 1+ –

a33
---=

CE 30125 - Lecture 19

p. 19.13

• The Gauss Seidel method is formally described in vector form as

• Define A as

• Put diagonal elements of into

• Put negative of elements of below the diagonal into

• Put negative of elements of above the diagonal into

• Scheme is then defined as:

, 

,

• The Gauss Seidel method is formally described using index notation as

, ,

A D L U––=

A D

A L

A U

DX k 1+  LX k 1+  UX k  B+ += k 0

X k 1+  D 1– LX k 1+  D 1– UX k  D 1– B+ += k 0

xi
k 1+ 

aij

aii

j 1=

i 1–

– xj
k 1+ 

aij

aii

j i 1+=

N

– xj
k 

bi

aii
------+= 1 i N  k 0

CE 30125 - Lecture 19

p. 19.14

Point Relaxation Methods (Successive/Systematic (Over) Relaxation - SOR)

• The SOR approach improves the calculated values at the iteration using Gauss-
Seidel by calculating a weighted average of the and iterations and using this
for the next iteration

• Where is the value obtained from the current Gauss-Seidel iteration

• is the relaxation factor which must be specified

• Ranges of values

• ranges between

•   Gauss-Seidel

• Under-relaxation

• Over-relaxation

k 1+ th

kth k 1+ th

xi
k 1+  xi

k 1+ * 1 – xi
k +=

xi
k 1+ *





 0  2 

 1= 

0  1  

1  2  

CE 30125 - Lecture 19

p. 19.15

• Under-relaxation 

• The current value is a weighted average of current Gauss-Seidel value and the
value from the previous iteration

• Typically used to make a non-convergent process converge

• Can also be useful in speeding up convergence when the solutions oscillate about
the converged solution

 INSERT FIGURE NO. 125

• Over-relaxation

• The current value is extrapolated beyond the Gauss-Seidel value

• Typically used to accelerate an already convergent process

• For , the process diverges

• For a diagonally dominant matrix, SOR will always converge for

  0  1 

xi
[k]

k

  1  2 

 2

0  2 

CE 30125 - Lecture 19

p. 19.16

• Selection of an optimal value is quite complex

• Depends on the characteristics of the matrix

• Certain “classes” of problems will have optimal ranges

• Trial and error is very useful

• We can apply different values of for different blocks within a matrix which exhibit
significantly different characteristics (different blocks in matrix may be associated
with different p.d.e.’s in a coupled system)

Application of Gauss-Seidel to Non-Linear Equations

• Gauss-Seidel (with relaxation) is a very popular method to solve for systems of
nonlinear equations

• Notes:

• Multiple solutions exist for nonlinear equations

• There must be linear components included in the equations such that a diagonal is
formed

• No general theory on iterative convergence is available for nonlinear equations





CE 30125 - Lecture 19

p. 19.17

Block Iterative Methods

• Instead of operating on a point by point basis, we solve simultaneously for entire groups
of unknowns using direct methods

• Partition the coefficient matrix into blocks. All elements in the block are then solved in
one step using a direct method

 INSERT FIGURE NO.126 and 127

Direct/Iterative Methods

• Can correct errors due to roundoff in direct solutions by applying an iterative solution
after the direct solution has been implemented.

1 2

3 4

5

6

7

8

=

1

34

5

6

7

8

5

6

= 

[k+1]

= 

[k+1] [k]

[k]

2



