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LECTURE 1

INTRODUCTION

Formulating a ‘“Mathematical”” Model versus a Physical Model

e Formulate the fundamental conservation laws to mathematically describe what is physi-
cally occurring. Also define the necessary constitutive relationships (relate variables
based on observations) and boundary conditions (b.c.’s) and/or compatibility
constraints.

e Use the laws of physics applied to an object/domain to develop the governing equations.
e Algebraic equations
* Integral equations — valid for the domain as a whole
* p.d.e.’s — valid at every point within the domain

* e.g. Newton’s 2nd law applied to a point in a hypothetical continuum — Navier-
Stokes equations

* Solve the resulting equations using
* Analytical solutions

e Numerical or discrete solutions

» Verify how well you have solved the problem by comparing to measurements
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A MATHEMATICAL MODEL

Physical System

Nature

ERROR 3: Data Errors ERROR 1: Formulation Error

Governing Equations
Set of Mathematical Equations

Numerical Solution

Numbers

ERROR 2: Numerical Errors

® Engineering modelers should distinguish Formulation Errors,
Numerical Discretization Errors and Data Errors
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Sources of Error in a Mathematical Solution

e Error 1: Missing or incorrect physics
e Model doesn’t include an important process (e.g. forces due to surface tension)
* Constitutive relationships are not a good approximation (e.g. friction law for pipes

and channels not as applicable to the open ocean).

e Error 2: Numerical Solutions entail errors related to
e Algorithm
* Discretization
* Boundary condition specification and domain selection

e Computer type

» Error 3: Observational errors occur in
* Measurements — e.g. instruments of limited accuracy

e Data analysis techniques — e.g. techniques may not be appropriate or based on poor
or invalid assumptions and approximations

* Interpretation — e.g. are the right things being compared?
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Solutions to Governing Equations

It may be very difficult to solve a set of governing equations analytically (i.e. in closed
form) for problems in engineering and geophysics.

* Governing equations may include
* Nonlinearities
* Complex geometries
* Varying b.c.’s
* Varying material properties
 Large numbers of coupled equations

* These problems can not be solved analytically unless tremendous simplifications are
made in the above aspects

» Simplification of governing equations
* Lose physics inherent to the problem
* Possibly a poor answer

e In general we must use numerical methods to solve the governing equations for real
world problems
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Numerical Methods

e Used in hand calculations (many numerical methods have been around for hundreds of
years)

» Used with computers (facilitate the type of operations required in numerical methods:
Early 1940 — 1970: more developed 1970 — present)

How Numerical Methods Work

e Computers can only perform operations on numbers at discrete points in space/time

e Continuum representation of a function must be changed to a discrete representation

fx) NG
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» Computers/compilers do not perform differential, integral or algebraic operations

® Differential, integral and algebraic operations must be transformed to arithmetic
operations using discrete points

e Numerical methods involve the representation and manipulation of governing equations
in discrete arithmetic form

e There are many numerical methods for many tasks
* To solve linear simultaneous algebraic equations
* To solve nonlinear algebraic equations
* To interpolate functions
e To solve o.d.e.’s
*1Lv.p.’s
*b.v.p.’s
* To solve p.d.e.’s

* To integrate functions

* Many of these techniques may have to be used to solve a single problem
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Why Study Numerical Methods

e No numerical method is completely trouble free in all situations!

* How should I choose/use an algorithm to get trouble free and accurate answers?

e No numerical method is error free!

* What level of error/accuracy do I have the way I'm solving the problem? — Identify
error 2! (e.g. movement of a building)

e No numerical method is optimal for all types/forms of an equation!
* Efficiency varies by orders of magnitude!!!
e One algorithm for a specific problem — seconds to solve on a computer

* Another algorithm for the same problem — decades to solve on the same
computer

® In order to solve a physical problem numerically, you must understand the behavior
of the numerical methods used as well as the physics of the problem
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Typical Difficulties Encountered with Numerical Methods

* The solution may become unstable

IRNEEPN
N

y

* The solution may be inconsistent

* Even as the discretization size 1s made very small, the solution may never approach
the hypothetical analytical solution to the problem!

N |

numerical solutions as Ax— 0 — - -
analytical solution ——
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* The solution may be highly inaccurate for a given discretization

* This may result in significant under/over predictions of the solution

Ci

analytical solution

coarse grid solution
XXXX finer grid solution

® An Engineer/Scientist as a developer and user must understand how a numerical
method performs for his/her given problem.

* An Engineer/Scientist must understand how various numerical algorithms are:
* Derived

* How the physics effects the numerics (e.g. nonlinearities) and how the numerics
effects the physics (e.g. artificial damping)

» Accuracy/stability properties (must use analysis techniques/numerical experiments)
* Cost of a method for given level of accuracy (not per d.o.f.) — this varies substan-

tially from method to method — computer memory, speed and architecture come
into play as well
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Example - Geophysical flows due to Tides and Winds in the Coastal Ocean

e Phenomena: Currents in the ocean and sea surface elevation are driven by wind, atmo-
spheric pressure, variations in density (due to temperature/salinity variations) and by
gravitational pull from the moon and sun (tides) and by Earth’s gravity and wobble

* Interest:
* Transport of pollutants (sewage, industrial toxics, heat waste, oil spills)
* Transport of sediments (dredging, coastal erosion)
* Sea surface elevation/currents (navigation, coastal flooding)

* Both operational and design models exist

* Governing Equations
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Tavlor Series

* Many numerical algorithms are/can be derived from Taylor series

e Many error estimates are/can be based on Taylor series

» Taylor series is given as:

f(x) =f(a)+(x_a)g.‘£ +Mﬁ +Mﬁ + ”+Mﬁ+R

. 2! dx?| 3! dx3| n! dxm
= xX=a X =a
where
. 1 n+1
R = remainder = (x—a)”*ld S a<i<x
(n+1)! dxn+1
x=¢&
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* We can find the value of f(x) at some x#a if we remain sufficiently close to x = a and
if all the derivatives of f at x = a exist.

 If we are too far away from x = a — the Taylor series may no longer converge

* A convergent series, converges to a solution as we take more terms (i.e. each subse-
quent term decreases in magnitude)

* Some series will converge for all (x-a) (radius of convergence), while for others
there is a limit

* If a series 1s convergent, then the value of f(x) will be exact if we take an infinite
number of terms (assuming no roundoff error on the computer)

e However we typically only consider the first few terms in deriving many numerical
methods

® This defines the truncation error
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Example

 If we consider only the first two terms of the Taylor series, the neglected or truncated
terms define the truncation error!

df (x—a)*d*f (x—a)’d’f (x-a)"d"f
- AT i AT el LR e |

X=a

J(x) = fla) +(x-a)

=a

e Various way of representing the truncation error

O(x-a)?
(x —a)?d>f
(x—a)”df a<t<x
2
2! dx cot
(x —a)*d*f
T(EZ + H.O.T.
X=a

* Note that the leading order typically dominates although the first few terms do some-
times compete.
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Example

e The accuracy of the series is determined by the order of the truncated error

_ 2 92
f(x) :f(a)+(x—a)c% +%%§ +O(x—a)’

=a

* O(x-a)’ and all higher order terms are not considered

e f(x) is accurate to O(x—a)? or third order accurate

log E

> log (x —a)
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Example

 Find the Taylor series expansion for f(x) = sinx near x = 0 allowing a 5th order error
in the approximation:

2 g2 _ \3 73
= ' x=0
L (x=0)*dYf
x4v dx? =0+0(x—0)5 =

4sm(0)+ O(x) =

f(x) = sin(0) +xcos(0) — 2sm(O) — 3cos(O) + 1

f(x) = 0+x—§$+0(x)5
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SUMMARY OF LECTURE 1

e Numerical analysis always utilizes a discrete set of points to represent functions

* Numerical methods allows operations such as differentiation and integration to be
performed using discrete points

» Developing/Using Mathematical-Numerical models requires a detailed understanding of
the algorithms used as well as the physics of the problem!
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