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LECTURE 1

INTRODUCTION

Formulating a “Mathematical” Model versus a Physical Model

• Formulate the fundamental conservation laws to mathematically describe what is physi-
cally occurring. Also define the necessary constitutive relationships (relate variables
based on observations) and boundary conditions (b.c.’s) and/or compatibility
constraints.

• Use the laws of physics applied to an object/domain to develop the governing equations.

•  Algebraic equations

•  Integral equations  valid for the domain as a whole

•  p.d.e.’s  valid at every point within the domain

• e.g. Newton’s 2nd law applied to a point in a hypothetical continuum  Navier-
Stokes equations

• Solve the resulting equations using

• Analytical solutions

• Numerical or discrete solutions

• Verify how well you have solved the problem by comparing to measurements
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Sources of Error in a Mathematical Solution

• Error 1: Missing or incorrect physics

•  Model doesn’t include an important process (e.g. forces due to surface tension)

•  Constitutive relationships are not a good approximation (e.g. friction law for pipes
and channels not as applicable to the open ocean).

• Error 2: Numerical Solutions entail errors related to

•  Algorithm

•  Discretization

• Boundary condition specification and domain selection

•  Computer type

• Error 3: Observational errors occur in

•  Measurements  e.g. instruments of limited accuracy

•  Data analysis techniques  e.g. techniques may not be appropriate or based on poor
or invalid assumptions and approximations

•  Interpretation  e.g. are the right things being compared?
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Solutions to Governing Equations

• It may be very difficult to solve a set of governing equations analytically (i.e. in closed
form) for problems in engineering and geophysics.

• Governing equations may include

• Nonlinearities

• Complex geometries

• Varying b.c.’s

• Varying material properties

• Large numbers of coupled equations

• These problems can not be solved analytically unless tremendous simplifications are
made in the above aspects

• Simplification of governing equations

• Lose physics inherent to the problem

• Possibly a poor answer

• In general we must use numerical methods to solve the governing equations for real
world problems
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Numerical Methods

• Used in hand calculations (many numerical methods have been around for hundreds of
years)

• Used with computers (facilitate the type of operations required in numerical methods:
Early 1940  1970: more developed 1970  present)

How Numerical Methods Work

• Computers can only perform operations on numbers at discrete points in space/time

• Continuum representation of a function must be changed to a discrete representation
 INSERT FIGURE NO. 116
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• Computers/compilers do not perform differential, integral or algebraic operations

• Differential, integral and algebraic operations must be transformed to arithmetic
operations using discrete points

• Numerical methods involve the representation and manipulation of governing equations
in discrete arithmetic form

• There are many numerical methods for many tasks

• To solve linear simultaneous algebraic equations

• To solve nonlinear algebraic equations

• To interpolate functions

• To solve o.d.e.’s

• i.v.p.’s

• b.v.p.’s

• To solve p.d.e.’s

• To integrate functions

• Many of these techniques may have to be used to solve a single problem
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Why Study Numerical Methods

• No numerical method is completely trouble free in all situations!

• How should I choose/use an algorithm to get trouble free and accurate answers?

• No numerical method is error free!

• What level of error/accuracy do I have the way I’m solving the problem?  Identify
error 2! (e.g. movement of a building)

• No numerical method is optimal for all types/forms of an equation!

• Efficiency varies by orders of magnitude!!!

•  One algorithm for a specific problem seconds to solve on a computer

• Another algorithm for the same problem  decades to solve on the same
computer

• In order to solve a physical problem numerically, you must understand the behavior
of the numerical methods used as well as the physics of the problem
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Typical Difficulties Encountered with Numerical Methods

• The solution may become unstable
 INSERT FIGURE NO. 117

• The solution may be inconsistent

• Even as the discretization size is made very small, the solution may never approach
the hypothetical analytical solution to the problem!

 INSERT FIGURE NO. 118

u

t

8

c

x

numerical solutions as x    0
analytical solution



CE 30125 - Lecture 1

p. 1.9

• The solution may be highly inaccurate for a given discretization

• This may result in significant under/over predictions of the solution
 INSERT FIGURE NO. 119

• An Engineer/Scientist as a developer and user must understand how a numerical
method performs for his/her given problem.

• An Engineer/Scientist must understand how various numerical algorithms are:

• Derived

• How the physics effects the numerics (e.g. nonlinearities) and how the numerics
effects the physics (e.g. artificial damping)

• Accuracy/stability properties (must use analysis techniques/numerical experiments)

• Cost of a method for given level of accuracy (not per d.o.f.) this varies substan-
tially from method to method computer memory, speed and architecture come
into play as well
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Example - Geophysical flows due to Tides and Winds in the Coastal Ocean

• Phenomena: Currents in the ocean and sea surface elevation are driven by wind, atmo-
spheric pressure, variations in density (due to temperature/salinity variations) and by
gravitational pull from the moon and sun (tides) and by Earth’s gravity and wobble

• Interest:

• Transport of pollutants (sewage, industrial toxics, heat waste, oil spills)

• Transport of sediments (dredging, coastal erosion)

• Sea surface elevation/currents (navigation, coastal flooding)

• Both operational and design models exist

• Governing Equations
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Taylor Series

• Many numerical algorithms are/can be derived from Taylor series

• Many error estimates are/can be based on Taylor series

• Taylor series is given as:

where

                   

 INSERT FIGURE NO. 120
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• We can find the value of  at some   if we remain sufficiently close to  and
if all the derivatives of  at  exist.

• If we are too far away from   the Taylor series may no longer converge

• A convergent series, converges to a solution as we take more terms (i.e. each subse-
quent term decreases in magnitude)

• Some series will converge for all  (radius of convergence), while for others
there is a limit

• If a series is convergent, then the value of  will be exact if we take an infinite
number of terms (assuming no roundoff error on the computer)

• However we typically only consider the first few terms in deriving many numerical
methods

• This defines the truncation error
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Example

• If we consider only the first two terms of the Taylor series, the neglected or truncated
terms define the truncation error!

• Various way of representing the truncation error

    

• Note that the leading order typically dominates although the first few terms do some-
times compete.
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Example

• The accuracy of the series is determined by the order of the truncated error

•   and all higher order terms are not considered

•  is accurate to  or third order accurate

 INSERT FIGURE NO. 121
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Example

• Find the Taylor series expansion for  near  allowing a 5th order error
in the approximation:

                                                              

  
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SUMMARY OF LECTURE 1

• Numerical analysis always utilizes a discrete set of points to represent functions

• Numerical methods allows operations such as differentiation and integration to be
performed using discrete points

• Developing/Using Mathematical-Numerical models requires a detailed understanding of
the algorithms used as well as the physics of the problem!


