CE 30125 - Lecture 8

LECTURE 8

NUMERICAL DIFFERENTIATION FORMULAE BY INTERPOLATING POLY-
NOMIALS

Relationship Between Polynomials and Finite Difference Derivative Approximations

* We noted that N degree accurate Finite Difference (FD) expressions for first derivatives
have an associated error

 If f{x) is an N"* degree polynomial then,
N+1

f=0

N+1

d
dx

and the FD approximation to the first derivative is exact!

e Thus if we know that a FD approximation to a polynomial function is exact, we can
derive the form of that polynomial by integrating the previous equation.

N N-1
f(x)=zax +a,x +...+ay,
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» This implies that a distinct relationship exists between polynomials and FD expressions
for derivatives (different relationships for higher order derivatives).

e We can in fact develop FD approximations from interpolating polynomials

Developing Finite Difference Formulae by Differentiating Interpolating Polynomials

Concept
e The approximation for the pth derivative of some function f(x) can be found by

taking the pth derivative of a polynomial approximation, g(x), of the function

J(x) .

Procedure
e Establish a polynomial approximation g(x) of degree N such that N>p

e g(x) 1s forced to be exactly equal to the functional value at N + 1 data points or nodes

e The pth derivative of the polynomial g(x) is an approximation to the pth derivative of

J(x)
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Approximations to First and Second Derivatives Using Quadratic Interpolation

 We will illustrate the use of interpolation to derive FD approximations to first and
second derivatives using a 3 node quadratic interpolation function

* For first derivatives p=1 and we must establish at least an interpolating polynomial
of degree N=1 with N+1=2 nodes

* For second derivatives p=2 and we must establish at least an interpolating polyno-
mial of degree N=2 with N+1=3 nodes

e Thus a quadratic interpolating function will allow us to establish both first and
second derivative approximations

» Apply a shifted coordinate system to simplify the derivation without affecting the gener-
ality of the derivation

o fi L
X, i x; hox,
0 h 2h — shifted x axis
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Develop a quadratic interpolating polynomial

* We apply the Power Series method to derive the appropriate interpolating polynomial

* Alternatively we could use either Lagrange basis functions or Newton forward or

backward interpolation approaches in order to establish the interpolating polyno-
mial

* The 3 node quadratic interpolating polynomial has the form

_ 2
g(x) = ax +ax+a,

* The approximating Lagrange polynomial must match the functional values at all N + 1
data points or nodes (x, = 0, x; = h, x, = 2h)

2

g(x,) =71, =  a,07+a,0+a, =J,
2

g(x)) = f = aoh +ah+a, = f;

g(xy) =/, = a,(2h)’ +a,(2h)+a, = f,
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» Setting up the constraints as a system of simultaneous equations

0 0 I |a f,

* Solve fora,, a,, a,

fr=2f1+], 4f, =, =31,
A = — > » 41 =

9 a2 =f
3 2h o

* The interpolating polynomial and its derivative are equal to:

2(x) = {fz_zfl +f0}x2+[4f1—f2—3qu +f)

n? 2h

g(l)(x) _ {fz—zf; +fo:|x N [4f1 _52_ 3fo}
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Evaluating gV (x,) to obtain a forward difference approximation to the first derivative

 Evaluating the derivative of the interpolating function at x, = 0
1 1
¢V, = g0 =

(1) B =3f,+4f1 -/,
g '(x,) = 77

 Since the function f(x) is approximated by the interpolating function g(x)

1V, =6V,

» Substituting in for the expression for g(l)(xo)

- 3f, +4f,
f(l)‘xoE 5 1 2
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* Generalize the node numbering for the approximation

X0 Xg X
@ @ L ]
] i+1 i+2

generalized nodal numbering

* This results in the generic 3 node forward difference approximation to the first deriva-
tive at node i

ﬁl):_3fi+4fi+1— i+2
L 2h
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Evaluating g™V (x)) to obtain a central difference approximation to the first derivative

 Evaluating the derivative of the interpolating function at x, = &

g = M) -
(f,=2f,+f,)  4f —f,-3f,
g(l)(xl) _ Y2 h21 I+ 1 22 .
g(l)(xl) _ fzz—hfo

» Again since the function f(x) is approximated by the interpolating function g(x)

A REFANCN

 Substituting in for the expression for g(l)(xl)

n

o,
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* Generalize the node numbering

xo X x2
@ L J
i-1 i+1

» This results in the generic expression for the three node central difference approxima-
tion to the first derivative

f(.l) :fi+1_fi—1
L 2h
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Evaluating g"V(x,) to obtain a backward difference approximation to the first derivative

 Evaluating the derivative of the interpolating function at x, = 2h

¢Vixy) = ¢V2n) =
0 (f,—=2f,+1,) . 4f, -3, R
g (xy) = 2 h; 2h+ ——
3f, — 4f, +F,
V) = ==

» Again since the function f(x) is approximated by the interpolating function g(x)

17, =60

 Substituting in for the expression for g(l)(xz)

f(l)‘ 4f1+f
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e Generalizing the node numbering

|

X0 Xg X
{ 4 @ L
-2 i-1 ]

» This results in the generic expression for a three node backward difference approxima-
tion to the first derivative

f<_1) _ 3 —4fi_1+fi 2
L 2h

p.8.11



CE 30125 - Lecture 8

Evaluating ¢®(x,) to obtain a forward difference approximation to the second derivative

e We note that in general g(z)(x) can be computed as:

g(z)(x) _ fz—zfz1 +f,

 Evaluating the second derivative of the interpolating function at x, = 0 :
2 2
¢7,) =70 =

g(z)(x()) _ fr— 2f21 +f,
h

e Again since the function f(x) is approximated by the interpolating function g(x), the
second derivative at node x, is approximated as:

17, 26%,)
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 Substituting in for the expression for g(z)(xo)

fr=2f +f
]((2)‘)60E 2 h21 o

* Generalizing the node numbering

] i+1 +2
@ @ @

 This results in the generic expression for a three node forward difference approximation
to the second derivative

f(2):fi+2_2fi+1+fi
i - h2
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Evaluating g®(x,) to obtain a central difference approximation to the second derivative

 Evaluating the second derivative of the interpolating function at x, = & :

2 2
P =P =

)
g(z)(xl) _ /> }?‘Ffo

» Again since the function f(x) is approximated by the interpolating function g(x), the
second derivative at node x, is approximated as:

2], 2%

» Substituting in for the expression for g(2)(x1)

2)‘ :f2—2f1 +1,
- 2

h

X1
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* Generalizing node numbering

i-1 ] i+1

%) Xg X

T

» This results in the generic expression for a three node central difference approximation
to the second derivative

j(Z)Nfi+1_2fi +fi 1
i = )
h

Notes on developing differentiation formulae by interpolating polynomials

e In general we can use any of the interpolation techniques to develop an interpolation
function of degree N>p. We can then simply differentiate the interpolating function
and evaluate it at any of the nodal points used for interpolation in order to derive an
approximation for the p” derivative.

* Orders of accuracy may vary due to the accuracy of the interpolating function varying.
» Exact accuracy can be obtained by substituting in Taylor series expansions or by consid-

ering the accuracy of the approximating polynomial g(x).

p.8.15
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Approximations and Associated Error Estimates to First and Second Derivatives Us-
ing Quadratic Interpolation

e We can derive an error estimate when using interpolating polynomials to establish
finite difference formulae by simply differentiating the error estimate associated with
the interpolating function.

e We will illustrate the use of a 3 node Newton forward interpolation formula to derive:

* A central approximation to the first derivative with its associated error estimate

* A forward approximation to the second derivative with its associated error estimate

Developing a 3 node interpolating function using Newton forward interpolation

* A quadratic interpolating polynomial (N = 2) has 3 associated nodes (N+1 = 3) or
interpolating points. We again assume that the nodes are evenly distributed as:

e With a quadratic interpolating polynomial, we can derive differentiation formulae for
both the first and second derivatives but no higher

p.8.16
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» The approximating or interpolating function is defined using Newton forward interpola-
tion as:

fx) = g(x) +e(x)

2

Af, 1 AT,
g(x) = f0+(x—x0)7+2—!(x—xo)(x—xl) e
e(x) = (x_xo)(x_xl)(x_xQ)f(3)(§) x,<E<x,

3!

* The error can be approximately expressed in either of the following forms:

(x—x,)(x—xp)(x —xz)f(3)

e(x)= 3 B

(x—x,)(x—x,)(x - x,)A’f,
30 3

e(x)=

» These latter two forms which do not involve & are more suitable for the necessary differ-
entiation w.r.t. x since & is functionally dependent on x, i.e. & = §(x)
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» The forward difference operators are defined as:
Afo Ef] _fo

Nf, =f, -2, +f,

Deriving a central approximation to the first derivative and the associated error estimate

 Evaluating the first derivative of the function at x, :

17

1 1
=g+

X=X
X0 Xg X
° ® °
central

p.8.18
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e Evaluating g(l)(x) in the previous expression

1 Af, 1 fo 1 1
f( )‘x_x = " 2—!(x—x0) 20+2—!(x—x1) 20+e( )(x)
h h x=x,
2
1 L Af, «
: h
1 1h 1
R +§h—2(fz—2f1 +f,) + eV
1 f 1
f( )‘ ( )(xl)

X =X

p.8.19
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* Now evaluate e(l)(x) using a non & dependent expression for the error term and evalu-
ating this expression at x,

V) = 55 SV =) () + (=3, (=0 + (=) (=3, _

V) = 55 1700 =3, )0y - 1)

eVix)=- f‘”( )

* Substituting for e(l)(xl) results in:

1o fz f h f(3)( \

X =X

p. 8.20
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* Generalizing node numbering as:

X0 Xg X
@ @ O
i-1 I i+1

 This results in the generic expression for a three node central difference approximation
to the first derivative with an appropriate error estimate

= —— + F

AD Jiv1-Jic1 \
! 2h

h2 3)
E =— Ef< (x; 1)
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* Notes

e The same discrete differentiation formulae can be derived using the Taylor series
approach.

* The results for the error estimates are the same regardless of whether you:
» Apply differentiation to e(x), which represents the error estimate for g(x).

» Apply a Taylor series analysis to the differentiation formula you derived.

e The error estimate for the interpolating function g(x) with & is most precise in a
formal sense (i.e. it includes all H.O.T. as well!). However there is a weak depen-
dence of & on x and therefore some inaccuracies may be incurred when differenti-
ating e(x) to obtain an error estimate for the corresponding finite difference
approximation.

* Practically, for estimating the error of the differentiating formula derived by esti-

mating e(l)(x), we can apply the procedure used and examine an estimate of the
error which does not depend on &. This is equivalent to examining the leading order
term in the truncated series.

 Note that the derivative in the error formula on the previous page may also be esti-
mated at x;

p. 8.22



CE 30125 - Lecture 8

Deriving a forward difference approximation to the second derivative and the associated
error estimate

 Evaluating the second derivative of the function at x,

7

2 2
= W) +eP(x)

A= x(}
@ @ L
X0 X] X2
forward

e Evaluate g(z)(x) and substitute

2
A A
= [LA 18 o
h “h X =x,
2
Ao @
—29+e (x,)
h
=2f1+/1,
2 1 2
f()‘x_x 2 T so )(xo)
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* Now evaluate e(z)(x) using a non & dependent expression for the error term and evalu-
ating this expression at x,

6(2)()60)5%]‘(3)()60)[()6—)61) F(x=2y) + (x=2,) + (x=20p) + (x =) + (x=x)]__
eix,) = % A, —xy) + (5, —x) + (x, —x,) + (x, = x,) + (x, —x,) + (x, —x,)]

eix) = % ) -h-2h+0-2h+0-h]

ePx)=-h fFx,)

o Substituting for ¢'*(x ) results in:
g 0

.

L2 o s,
n

’C_X
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* Generalizing the node numbering:

X0 g X
(o] O- 0
i i+1 +2

T

 This results in the generic expression for a three node forward difference approximation
to the second derivative with an appropriate error estimate

f(Z) _ fi+2_2fi+1_fi+

E
1>

E=-hf¥(x)

p.8.25
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SUMMARY OF LECTURE 6,7 AND 8

e Difference formulae can be developed such that linear combinations of functional
values at various nodes approximate a derivative at a node.

 In general, to develop a difference formula for ﬁp ) you need p + 1 nodes for O(h) accu-

racy and p + N nodes for O(h)" accuracy. Central approximations for even order deriva-
tives require fewer nodes due to a fortunate cancelation of error terms.

* The generic form to evaluate a difference formula

f(p)_ _a(xfa+aﬁfﬁ+...+a}\’f}\’
i - hp

*E = O(h)N when p + N nodes are used

* Substitute in Taylor series expansions for f, , f etc. about node i, re-arrange equa-
tions such that coefficients multiply equal order derivatives at node i and generate

algebraic equations by setting the coefficient of fﬁf’ ) equal to 1 and the p+N-1
other coefficients equal to zero.

* Solve for a,, ag, .-

p. 8.26
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» Forward, central and backward difference operators can be manipulated in ways analo-
gous to differentiation to develop higher order differences

* Formulae to approximate differentiation using the difference operators can be estab-
lished. However, general formulae for any order accuracy are difficult to establish. Also
you still need Taylor series analysis to derive the accuracy of the approximations.

* Numerical differentiation formulae can be established by defining an interpolating poly-

nomial for at least p + 1 nodes (to evaluate the pth derivative). Any interpolating tech-
nique formula can be used. The numerical differencing formula is simply the
differentiated interpolating polynomial evaluated at one of the nodes used for interpola-
tion. The node at which the formula is evaluated establishes whether the approximation
18 forward, backward, central, etc.

p. 8.27



