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1.5 DEVELOPMENT OF THE DEPTH AVERAGED GOVERNING EQUATIONS

General Considerations

» We are deeloping a hierarchof equations\eeraged wer various scales.

* Molecular Scale:
* Navier-Stokes Equation + Continuity Equation
* u,yw,p
« Valid for all flovs davn to the molecular scale

» We cannot resole down to the viscousdissipationscalefor normalcomputa-
tions

* Turbulent Scale:
* Reynolds Equation + Continuity Equation
°*0,V,Ww, pandu'u, uv, uUw, vV, Vvw, ww'
» Needto selectaturbulenceclosuremodel(i.e. a setof constitutive relationships)

« Valid for all flows down to the turbulent averagingscale(in time T andrelated
space scales)
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 Let us ¢amine spatial\weraging @er the depth dimension- depth aeraged flov

* River and channel fies
 Estuarine and coastal oceamfio
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» A key assumption for depthvaraging is that thBow in the \ertical direction is small

» Thisimpliesthatall termsin the z-direction Reynolds Equationare small comparedo
the graity and pressure terms.

* Thus thez-direction Rgnolds Equation reduces to

0p _

35 = P9 (15.1)

* This implies that the pressure distrilon over the \ertical is tydrostatic.
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Depth Integrated Continuity Equation
 Considerthe geoidto be definedat z=0, the free surface (waterair interface)at z=n,

and the bottom (atersediment intedce) atz=-h.
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» Depth aeraged elocities are defined as:

» Where total vater column height is defined as:
H=n+h

* Flow rate wer the \ertical is defined as:

n
g, = [Odz = UH
!
n
q,= [Vvdz= VH
|

p.154
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Assumingincompressibleturbulent time averagedflow, the appropriateform of the
continuity equation is:

au av ow_

3 ay 550 (15.7)

Now let’s vertically average:

A5 gy & S 0 te0
-h

Multiplying through byH and &aluating the last inggal:

n(xy, t) nxy,t)

ov _ _ _

I —dz J’ @dz+ w(n)—w(-h)=0 (1.5.9)

—h(x, y) -h(x, y)
* Using Leibnitzs Rule, we knw that:
B(x, y,t) B
of __ 0 A

J’ —dz Ifd fl,_ Bax +f|,_ Adx (1.5.10)

A(x.Y)
p.155

CE 344 - Topic 1.5 - Spring 2003 - Revised February 13, 2003 3:20 pm

* Substituting in for the remaining irgeal terms using Leibnitg’Rule and re-arranging:

n
G M4 o2 g T JY:IC.) 1 R
&iLUdZ I _[ ox” @_W]zzn +[u ox 6y ]z:—h =0 (1.5.11)

 Velocities at the free swae and bottom may bepmressed as:

_Dn an o, on
W,_ = a‘ i *0],_ 3% v'Zan (1.5.12)
@ _ D(=h) _0(=h) . a(=h) , o d(-h
W= = Dt Z:_h‘ ot i P X +V|z=_ha—y (1.5.13)

Jo e ] =90
[ua 6y ] T (1.5.14)

N G O G ) P -
[u ox +v dy ]Z__h =0 (1.5.15)
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Substituting these expressions into the continuity equation we have:

n
6 6 _
an * I a— I vdz= 0 (15.16)
“h “h
» However by definition we have:
n
I tdz=q, (15.17)
n
I vdz= dy (1.5.18)

Again substituting:

a_n+aq)<+%:

5t ax Ty 0 (15.19)

Noting that q,= HU, q,= HV where i, v equal the vertically averaged velocities:

on , A(UH) , O(H) _

5 o 5y (1.5.20)

p.15.7
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Depth Integrated Reynolds Equations

 Consider the x-direction Reynolds equation:

_ _ _ a1 It t/m It t/m
00, g0, 490, 520 10D, 100, 1Ty, 170« (15.21)
ot ox dy 0z PedX Py Ox Py Oy Py 0z

where /"= pg—;—(—pou'_u (15.22)
t/m_ 00 _ ——

Ty = ua—/—pouv (1.5.23)

1,0 "= pg—g_pom (15.29)

=X = _pg (1.5.25)

p.158
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* Integrating this equation between the free surface at z=n and some level z

p(x ¥, 2) z
I op = — J’ pgoz (1.5.26)
Ps(X, Y) z=n
where pg = pressure at the free surface (15.27)

» Assuming that density is constant:
p—ps= —(Pgz—pgn) (15.28)
P= ps+pgn —pgyz (1.5.29)
» The pressure gradient term in the x-direction Reynolds equation becomes

19p_ _19Ps_ an

Tpox. pox  Iox (1530
» Assuming that surface pressure does not vary spatially:
_1op_ _,on
59x 955 (15.31)
p. 159
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 Thus the x-direction Reynolds equation with the assumptions of constant density flow,
and hydrostatic pressure distribution and constant atmospheric pressure becomes:

o ~ Jr VM g vm s vm
0U+_au 00, _00_ a_r]+; XX +1 yX +1. 7

at " Yax T Vay ™oz "% Tp ax Tp oy p oz

(1.5.32)

» Now add o times the continuity equation to the above equation:

on, oo _do, _do, 00, 0V 6 _OW_

t/m t/m t/m
on + l.DaTxx + laTyx + l.asz C

~ 95« p% X p oy p 0z %

(1.5.33)

» Re-arranging

3t ax oy | oz

t/m t/m
o, 10T, N 10Ty,

~ 95« p% ox p 0y p 0z

(15.34)

p. 1.5.10



* Vertically averaging these equations:

Iatd“f‘a‘d“I

-h

GEI

-h
t/

» Apply Leibnitz'srule as follows:

nixy,

t
)af

—dz=

ot

-h(xy)

aﬂ

wheref=10,0%,0v,n, 1

» Furthermore, we note that:

n
agdz—
Joz

where g=0W, T

m

tJ’ fdz—

n

I

-h

* Substituting and re-arranging we have:
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a 10T n 10T vm
_grdn ot S 1w
gJ’ dz+ .[]p Ix dz+ .[]p ay d

6n
flz no flz—
2
XX? Tyx
gl _glz:—h

1 ZX

p.15.11

n
lasz
+ Jr-]‘—) 0z dz

a(uv)d .\ Ja(uw)dz_

t/m

a(=h)
-h ot

(1.5.35)

(1.5.36)

(15.37)

(15.38)

(15.39)
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r] n ﬂ
IDdz+—J’D dz+—Iuvdz
—h
on, . on gdh) | 9h) | Ja(=h) o _
x+vay WD]z—n+[ 5t X +V 5y W]Z:_h
9 on__ a(-h), v
m
_ga_xj;ndﬁg”&_gn ax paxf xx
t/m _1. t/ma_r] t/ma_r]_ t/m
payf yX p|:Txx aX+ yX ay Tox ]Z=ﬂ
l'[r t/ma(—h)+ t/md(=h) h) t/m]
pLo Tax Tt Toy x|

p.15.12
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* However as we noted before:

N, M, g =
[at +uc3x+vay ]z:n_ 0 (1.5.41)
a(=h) , -9(-h)_ 9(-h) - -
[ ST T0 Y 5y W]zz—h_ 0 (1.5.42)

« By performinga stressbalanceat the surface,it canbe shavn thatt; = appliedsurface
stress in the-directionand parallel to the su#ce.

s _ [ t/mar] t/ma_rl_ t/m
T = [ Tyx ax T dy Ty ]z:n (1.5.43)

 Similarly at the bottom:

b d(-h d(-h
= _[Txxt/m% +_[yxt/m(a_y)_.l_zxt/m]z__h (1.5.44)
p.15.13
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* Substituting reduces themomentum equation to:

r] n

rl
atJ‘udz+a J’udz+ IU\'/
—h —h —h

n s _b
_ r]_ 0( h) t/m 1.2 t/m E(_E(
ga J'rle+ NS N5 paxITXX +pay{ryx dz + 5o (1.5.45)
* Let us define the deptlveraged ariable as
1 n
a= ﬁ‘[hadz (1.5.46)

» The Reynoldsaveragedquantityis thendefinedasthe sumof the depthaveragedvari-
able and the deation from the depthweraged griable

Ql
n
Q1
+
[o})

(1.5.47)

p.15.14
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» Thuswe definevelocitiesin termsof the depthaveragedquantityandthe deviation from
the depth @eraged quantity

s
= .
: A Wa
ua—)!
|
» Thus spatialeeraging is applied as:
n
Iudzs Hu (1.5.48)
Th
n
J’vdzs HU (1.5.49)
—h
» Furthermore we let:
alx, ¥,z t) = U(x y, t) +0(x, y, z, t) (1.5.50)
(X, ¥, z,t) = V(x, ¥, t) +U(x, v, 21) (1.5.51)
p.1.5.15
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* This implies that:
n n
J’Odz: 0 andJ’de: 0 (1.5.52)
h h
* Hence
n n
2. ~2 amn 22
J’u dz = J’(u +0ul +07)dz (1.5.53)
h Th
n n n n
Inzdz: i [ dz+ 20 tdz+ Iﬂzdz (15.54)
—h —h —h -h
n n
J’Uzdz: HU + J’szz (1.5.55)
h h
* Similarly
n n n
J‘D\'/dz = J’(G\7+ uv + av + 09)dz= GVH + J’G\?dz (1.5.56)
h h h

p.15.16
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* Finaly
n n
Indz:njdz: nH
—h —h

* Substituting and re-arranging:

O(HD) , A(HT®) , a(HIY) _

ot 0X oy
» Expanding the terms involving gravity:
o(nH) , KN

9% ox g”ax g”ax —gH 0x

p.15.17
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» We also note that the acceleration terms can be expanded as.

d(HT) _ ;9H , 30

ot ot ot
6(Hl]) ~a(r] +h)
ot ot at
9(HT)_ an , 30

ot 0t ot

d(HI) _ -9(HD) , ,,-~dl
ax . Uax *Hu Uax
O(HTIY) _ -0(HY) , -0l
oy oy oy

p.15.18

(15.61)

(15.62)

(15.63)

(15.64)

(1.5.65)
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* Substituting in the gravity and acceleration term re-arrangements:

ol =3l . -3l ~ron . d(H) a(H\N/)]
Hat+H“ax+HVay+”[at+ ax oy

n—t/m n—t/m s _b

i} [ i} o 1, T
:—gHQﬂ+—a—ID&—azmz+—a—IDL—ﬁvmz+—X——X
ox oxJgep g dyloep O P P

(1.5.66)

* Itisclear that the depth averaged continuity equation is embedded in the previous equa
tion and therefore drops out. Dividing through by H results in the depth averaged
conservation of momentum equation in non-conservative form (refers to us having

altered the form of the acceleration terms).

ol , ~0U . ~dl_ an

E+U5)—(+V5—— —g&+
n wt/m n—t/m S b
10 D:xx AZD 10 Ij'-yx AAD 1TX 1TX
HathD o ~UHE Hay_[E TR
p. 1519
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» The Shallow Water Equations are collectively written as:

on , A(UH) , A(VH)

ot | ox ay - ©

00, 400, 00_ _ o
ot Yax Yoy T9%x

n—t/m n —t/m S b
1 6 [Txx AZD 1 6 [Tyx AAD lTx 1Tx
HaXJ;D o ~UHE HayfhuB o TH T HD TR
OV, oV, OV _ 0n
ot dx oy oy
n—t/m n—t/m s
10 [txy AAD 1 6 |j--yy AZD 1Ty 1Ty
Haxj;m o~V HayfhmB o TVH" HP THp

p. 1.5.20
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» The Shallow Water Equations were established in 1775 by Laplace.

» The Momentum Conservation Statements are quite similar to the Reynolds equations
with the following exceptions:

* Variables are now depth averaged quantities.
* The zdimension has been eliminated.
* There are convective inertiaforces caused by the flow deviation from the depth aver-
aged velocities G, V.
 These equations have built into them 3 levels of averaging:
* Averaging over the molecular time/space scale
* Averaging over the turbulent time/space scale
* Averaging over the depth space scale

* The latter two produce momentum transport terms that are intimately related to the
convective terms.

p.15.21
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* There are now three mechanisms of momentum transfer built into these equations:

. I"g—?(dz type terms are the viscous stresses and represent the averaged effect of
h

‘molecular motions. These terms are necessary since we do not directly simulate the
momentum transfer via molecular level collisions.
n —

. J’u'u'dz type terms are the turbulent Reynolds stresses and represent the averaged

-h
effect of momentum transfer due to turbulent fluctuations. These terms are neces-

sary since we are not directly simulating momentum transfer via turbulent fluctua-
tions.

n
. J’ G0dz type terms represent the spreading of momentum over the water column. This
-h
process is known as momentum dispersion. These terms are necessary since we are

no longer directly simulating this process via the actual depth varying velocity
profiles. They spread momentum laterally.

p.15.22



CE 344 - Topic 1.5 - Spring 2003 - Revised February 13, 2003 3:20 pm

* Momentum dispersion can be conceptualized by following a pollutant spread over
the water column.

* Non-depth average simulation at t = t,

1

T = e =

* Non-depth average smulation at t = t,

p.15.23
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* Depth averaged simulation at t = t,

N

/\/ =
Z
i
£ o

7 e

* Thus, dispersion terms are necessary!

p. 1524
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» The Shallow Water equations greatly simplify flow computations in free surface water
bodies.

 Reduce the number of p.d.e’sfrom 4 to 3.
* Reduce the complexity of the variables

U(x, v, t), v(x, y, t), n(x, y, t) instead of (1.5.71)
a(x v,z 1), v(x, Y,z t), W(x, y, z t), p(x, ¥y, z t) (1.5.72)

* Built-in positioning of the free surface boundary which is typically unknown when
applying the Reynolds equation.

» The Shallow Water equations include 10 additional unknowns as compared to the
Navier-Stokes equations:

e (U'U ,(u';v'), (v';\/) - Latera turbulent momentum diffusion

L]

o)
o
o)
>
<
P
!

Lateral momentum dispersion related to vertical velocity profile

-~ Applied free surface stress
* 1, T, -~ Applied bottom stress. It is related to the vertical velocity profile,
momentum transport through the water column, bottom roughness.

p.15.25
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» These 10 additional unknowns require that 10 constitutive relationships are provided in
order to close the system.

* A very simple closure model for the combined lateral momentum diffusion (due to
turbulence) and dispersion (due to averaging out vertical velocity profile) is.

n ~
K: 0
Pz = £, 2 (15.73)
J0P O ox
n t/m ~
B} 0
[ —0’mz = Eyya(HV) (15.74)
40P O oy
n t/m ~ ~
5} O
[ H-Xl- - avgdz: Exy[a(;y”) + a(:x")] (15.75)

* Ey Eyy and E,, are called the eddy dispersion coefficients.

XX?

 This model assumes that the dispersion process dominates the turbulent momentum
diffusion process which dominates the molecular momentum diffusion process.

* Inatypical gravity-driven open channel flow, the lateral momentum dispersion terms
do not play a maor role in the momentum balance equations - they can be
neglected.

p.15.26
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* |n cases where a strong vertical velocity profile exists (i.e. wind driven flow in deep
water), the lateral dispersion terms may be important due to the @, ¥ contributions.
The importance of these termsistied to the advective terms.

* In cases where very strong lateral gradients in the horizontal velocity profile exist
(e.g. strong flow emerging into a recelving water body), the lateral dispersion terms
may be important due to the u', v contributions. The importance of these terms is
related to the convective terms.

/

* The eddy dispersion model provides equations for 6 unknowns (since unknowns
were consolidated). We still need constitutive relationships for 4 unknowns.

p.15.27
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* Surface stressis very small unlesswind is blowing over the water. Wind stress rel ation-
ships depend on sea surface roughness and 10 m wind speed. They are not related to the
water speed.

 Bottom stressis closed by empirical relationships:

b
T ~ ~2.1/2.
-F;X = ¢ (W*+¥%) 0 (15.76)
© 1/2
Ey = ¢ (W +V) 7V (15.77)
where
c; = friction factor (1.5.78)
c; = %fow - Darcy Weishach (1.5.79)
Ci= —% - Chezy (1.5.80)
c
2
Ci= ng | Manning (15.81)

1/3
h
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