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Geophysical flows over complex domains often encompass both coarse and highly resolved regions.
Approximating these flows using shock-capturing methods with explicit timestepping gives rise to a Cou-
rant-Friedrichs-Lewy (CFL) timestep constraint. This approach can result in small global timesteps often
dictated by flows in small regions, vastly increasing computational effort over the whole domain. One
approach for coping with this problem is to use locally varying timesteps. In previous work, we formu-
lated a local timestepping (LTS) method within a Runge-Kutta discontinuous Galerkin framework and
demonstrated the accuracy and efficiency of this method on serial machines for relatively small-scale
shallow water applications. For more realistic models involving large domains and highly complex phys-
ics, the LTS method must be parallelized for multi-core parallel computers. Furthermore, additional phys-
ics such as strong wind forcing can effect the choice of local timesteps. In this paper, we describe a
parallel LTS method, parallelized using domain decomposition and MPI. We demonstrate the method
on tidal flows and hurricane storm surge applications in the coastal regions of the Western North Atlantic
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1. Introduction

It is well-known that for explicit time discretizations of conser-
vation laws, the timestep must satisfy a CFL condition for numeri-
cal stability. From a global perspective, the timestep calculated
from the CFL constraint is governed by the size of the smallest ele-
ment and the eigenvalues of the system. In many situations, for
example when the grid is unstructured or the physics is highly
localized, the element sizes and eigenvalues may vary significantly
over the domain, resulting in inefficiencies in regions where the lo-
cal CFL timestep could be much larger than the global CFL
timestep.

One way to deal with this problems is to use local timestepping
(LTS), where the step size varies on each element and is dependent
on a local CFL condition. Such methods have been previously de-
rived and applied to general conservation laws by a number of
authors [1-7] and to a variety of applications; see for example
[8-14]. This procedure is also similar to multirate methods and
adaptive mesh refinement (AMR) methods. The AMR method used
in the GeoClaw software [15,16] uses forward Euler timestepping
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with timesteps dictated by local CFL constraints on each refine-
ment patch. The fluxes at the interfaces between levels are con-
served in the same way described here, and as described in [1].
The multirate methods described in [6] for conservation laws are
shown to preserve second order accuracy and the TVD property.
In previous work [8], we developed and applied an LTS method
within the framework of a second order Runge-Kutta discontinu-
ous Galerkin (RKDG) method, and applied the method to the solu-
tion of the shallow water equations. The accuracy and stability of
the method was examined and comparisons with RKDG solutions
with no LTS were given for some relatively small-scale model prob-
lems, with all test cases executed on serial computers. The shallow
water equations (SWE) are a set of hyperbolic partial differential
equations (under the assumption of inviscid flow) which describe
the circulation of an incompressible fluid where the water depth
is much smaller than the horizontal wavelength. The SWE are used
to study tides, storm surges and dam breaks, among other applica-
tions. In these problems, complex geometries such as irregular
shorelines, channels, inlets, and regions with highly varying
bathymetry, must be resolved to accurately capture the flow.
Therefore, shock-capturing methods based on unstructured finite
element discretizations, such as the discontinuous Galerkin
(DG) method, are often applied to the SWE. DG methods are
capable of incorporating special numerical fluxes and stability


http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cma.2013.03.015&domain=pdf
http://dx.doi.org/10.1016/j.cma.2013.03.015
mailto:clint@ices.utexas.edu
mailto:ctrahan@drc.com
mailto:kubatko.3@osu.edu
mailto:jjw@nd.edu
http://dx.doi.org/10.1016/j.cma.2013.03.015
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma

C. Dawson et al./Comput. Methods Appl. Mech. Engrg. 259 (2013) 154-165 155

post-processing into the solution to model highly advective flows
without excessive oscillations. Additionally, DG methods are
highly parallel and allow for locally varying polynomial orders.
Extensive previous work describing the development and applica-
tion of DG methods to shallow water systems by the authors and
collaborators can be found in [17-22].

In this paper, we study the LTS method described in [8] for some
large-scale coastal flow applications. These applications require
large domains, highly unstructured meshes with hundreds of thou-
sands to millions of elements, and can involve simulation of com-
plex phenomena over several days. Thus, efficient simulation
requires the use of parallel computing. The extension of LTS meth-
odologies to distributed memory parallel computers is nontrivial,
and we describe one approach which has proven effective for
two SWE applications with complex physics, namely modeling ti-
dal flows in the Western North Atlantic ocean, and modeling coast-
al inundation due to hurricane storm surge in the Gulf of Mexico.
This approach builds upon a fully parallel RKDG shallow water sol-
ver developed by the authors and several collaborators [18,19],
where the parallelization is achieved through domain decomposi-
tion and MPL.

The rest of this paper is arranged as follows. In the next section,
we outline the RKDG method and discuss the implementation of
the LTS method in a parallel computing environment. In Section 3,
we discuss the shallow water model, and study the LTS method in
the context of the two applications mentioned above. In particular,
we investigate the overall efficiency of LTS in parallel vs. standard
global timestepping, and how well LTS performs within a complex
coastal modeling system.

2. Numerical methods
2.1. The discontinuous Galerkin finite element method

In this section we briefly outline the DG method. Consider the
hyperbolic equation,
ow +V Fw)=s. (1)
ot
To formulate the semi-discrete DG method for (1), the physical do-
main, Q, is first partitioned into non-overlapping finite elements, K;
fori=1,2,...,N.If P"(Ki) is defined as the space of polynomials of
degree < k over element i, the DG method can be formulated as
seeking a piecewise smooth function wyl € P*(K;) which Vi
satisfies:
owy,

— dx—/F(wh)-Vvhdx-i-
JK;

5t F-nuyds = / svp dx,
JK;

Jok; JK;
(2)

where vy, € P*(K;) is the test function, and F is an approximation
to the normal flux at the element boundaries. Here n; is the unit
outward normal to 9K;.

Eq. (2) is obtained by multiplying the original equation by a test
function, integrating over each element and integrating the diver-
gence term by parts. The numerical flux is required since the dis-
crete solutions allow for discontinuities between elements. For
nonlinear equations, an approximate Riemann solver is used to de-
fine the numerical flux along element boundaries. Given a face be-
tween two elements, we label the elements on each side of this
face K_ and K., and let n be the normal vector to the face which
points from K_ to K, then

F~Fn
and F depends on the solution on either side of the face, that is,

F= F(Wh_77 Wh.+)7

where wy_ = wy|, with similar definition for wj, .. For elements on
the boundary, the normal n is assumed to be the outward normal to
the boundary of the domain, and w;, . is chosen to enforce external
boundary conditions; see [17]. Many different numerical fluxes F
have been proposed in the literature. For the results presented
below, the local Lax-Friedrichs flux is used.

The discrete solution and test functions are then expanded on
element K; with s degrees of freedom:

Whlg, = ZWJI Unlk, = ZUm

where {w, 7} are the basis function degrees of freedom, and {¢,}
are the basis functions. Using (3) and (2), Eq. (1) can be written as
system of ODEs

)$i(%.¥), ) (X, Y), 3)

maW— (4)

where M, = fK,- ¢j¢x dx is the mass matrix and

= W11, Wa1,. .., Wer, Wia,..., Wen], (5)
b= [Ri(¢1),Ri(2),....Ri(¢s). Ra(by), ... Ru ()], (6)
with,

R = [ Fwn) - Vi 50 5 / Fm s @)

2.2. Runge-Kutta time discretization

For time integration, the system of equations

dw _
dar Ly(w)

is discretized in time using an explicit, strong stability preserving
(SSP) Runge-Kutta scheme. These methods were originally referred
to as total variation diminishing methods and were introduced by
Shu and Osher (see Refs. [23,24]). For linear basis functions in space,
generally a second order SSP Runge-Kutta scheme is used. Given a
timestep At, and t" = nAt, n=0,1,..., the method is defined as

=M"'b (8)

W = W(t"),
w = 1]+AfL( 11)7 fori:1,27 (9)
w(th) :%(Wo_i_wZ)A

Thus, the method consists of taking two forward Euler steps, and
averaging the final result with the solution at the previous timestep.
This method is also known as Heun’s method.

2.3. Slope limiting and wetting and drying

Other aspects of the DG implementation, such as slope limiting
and wetting and drying, which are more specific to the shallow
water application, are described in [8] and the references therein.
Therefore we will not repeat them here except to say that in the
numerical results below, we use a vertex-based slope limiter
(the Bell-Dawson-Shubin limiter) as described in [25,26], and
the wetting and drying algorithm described in [21] is used.

2.4. Local timestepping (LTS)

While the RKDG method described above allows for any
polynomial order approximating space and higher order time-
stepping, we will restrict our attention in the remainder of this
paper to piecewise linear approximations and second-order SSP
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Runge-Kutta timestepping. The LTS method that we employ is
described in [8], however we review it again here for complete-
ness. It is based on a simple modification of the second order SSP
Runge-Kutta method described above, to allow for different
timesteps in different regions, and to conserve mass.

We also remark that the LTS scheme discussed here follows in
spirit the method originally described and analyzed in [3] for the
one-dimensional conservation law u; + f(u), = 0. In that work, a
local timestepping method was derived from an RKDG scheme,
with piecewise linear approximations in space and Heun’s method
in time. It allowed for interfaces separating elements with time-
steps differing by a factor M, with local CFL constraints imposed
on each element. The method was shown to satisfy a strict maxi-
mum principle, and is hence stable, with a suitable slope-limiter
applied to the linear component of the numerical solution. While
the stability proof does not extend to the shallow water equations
defined over very general domains and discretized on highly
unstructured triangular meshes, the analysis in [3] does suggest
that the approach described here could have similar stability prop-
erties. Our numerical tests to date suggest that this is in fact the
case.

To describe the LTS scheme, we consider decomposing an
example domain, Q into two zones, Q; and Q,, see Fig. 1. These
zones are separated by a one-dimensional interface o, indicated
by the dashed line. Each zone consists of some number of ele-
ments. In Fig. 1 Q, has four rectangular elements, and Q; has eight
rectangular elements which are half the size of the elements in Q,,
which would lead to a more severe CFL timestep constraint in Q,
than in Q,. Each zone is assumed to have its own timestep,
{AT;,AT,}, assigned so that (1) each satisfy its subdomain CFL
constraint and (2) AT, = MAT,, for some positive integer M.

Assume the solution is given over the whole domain at time t".
In order to propagate the solution to time t"*! = t" + AT,, M sub-
timesteps within Q; are taken. To evaluate numerical fluxes at
the interface g, the Q, states are fixed at time t". Subsequently,
Q, is updated to t"*! by taking one timestep. To calculate the fluxes
at ¢ as seen from Q,, an average over the M Q, fluxes is used.

More precisely, suppose K; and K, are two neighboring ele-
ments whose common boundary 9K; N 9K, intersects the local
timestepping interface ¢. Assume K, is in the subdomain Q; and
K3 is in Q,. Suppose that the normal on dK; N 9K, points from K;
to K,; i.e, Ky is K. and K, =K, in the notation above. Let
w2 = wy(t") and W' = wy (t" + IATy), for [=0,..., M.

Then combining (9) and (2), the RKDG method on K; at time
" = t" + IAT, is defined by

Q, Q,

Fig. 1. Division of Q into two zones with different timesteps.

w oy dx= [ wi M o, dx + AT,

Ky Ky Ky

Fw, ') - Vo, dx

_ AT, / Fw, " w, M) - ny oy ds — AT,
JOKqi /o

h+

></ Fw, " wl,) mjvy ds + AT,
0Ky oK, ’ '

xl/ sy dx (10)
Ky

fori = 1,2. Here we have split the boundary dK; into the part which
does not intersect o, i.e., 9K; /o, and the part which does intersect o,
i.e,, K1 N dK,. We are assuming that on 9K, /o no local timestep-
ping is occurring. At each intermediate timestep t*"! we set

0,1+1 1

W = i) (11)

for[=0,...,M— 1. Then on K,, the RKDG method is defined by

whopdx= [ wil vopdx+ AT, [ FWi") - Vo dx

K, K, K,

M-1
— AT, / F(wj W ]) myw,ds — ) AT,
oK /0 ' ' 1=0

X / Fw, M wl ) myuy ds + AT,
Jok,noK, ’ '

x/swdx (12)
K>

for i = 1,2. Finally on K,

Wh(E1) = 3 (W + W), (13)

Combining (10)-(13), setting v, = 1 on K; and K>, and noting that
n; = —n; on 9K; N oKy,

/ wp (t™1)dx :/
KUKy Ky UKy

where S is an approximation to the time integral of the source/sink
terms in the model over the time interval [t",¢t™!]. Thus, in this
sense, mass and momentum are conserved in the region of the
LTS interface.

[Wh(t") + S]dx

2.5. Implementation and parallelization

The LTS method described above allows for a fairly general
timestepping approach with one assumption, that neighboring ele-
ments are assumed to have timesteps which differ by some integer
M. In order for the coding of the LTS method not to be overly cum-
bersome, we assume that each element K in the discretization of Q
is placed into a timestepping group or level. Level 1 will denote the
elements with the smallest timestep, level 2 the next smallest, and
so forth. We will denote the total number of levels by N. For sim-
plicity we will also assume that M is constant from one level to
the next.

Elements are sorted into levels by first calculating a local CFL
timestep. On each element K, we compute a local timestep
At = o (14)

Ak
where  is a CFL parameter which is O(1), typically o = 1/v2, hg is
the minimum distance between the centroid of the element and the
midpoint of the edges of K, and Jk is an estimate of the maximum
eigenvalue of the Jacobian associated with the normal flux F. Let
AT;, 1=1,...,N denote timesteps associated with each timestep-
ping level, where MAT, = AT,;. We assume that
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AT; < n‘;(m Atg.

Then element K is placed into timestep group [ if
AT, < Atg < ATy, (15)

If Aty > ATy then element K is placed into level N. The element
timesteps are then reset, thus if element K is in group I, then
AtK — AT[.

In [8], this approach was investigated for several shallow water
applications and observed to preserve second order accuracy for a
problem with an analytical solution, and it was shown to give solu-
tions comparable to those computed using a global CFL timestep
(i.e., N=1). Furthermore, on serial machines, the method was
shown to be nearly optimal in terms of computational efficiency.

For large-scale applications of interest, solutions cannot be
computed in serial due to memory and CPU limitations, therefore
parallel computing is necessary. We have investigated the imple-
mentation of the LTS method in parallel, again implementing the
LTS method in a DG shallow water model. The parallel perfor-
mance of this model without LTS has been investigated in other pa-
pers, most notably in [18]. The parallelization approach is based on
domain decomposition, where the domain is first decomposed
using the METIS software library [27,28]. METIS divides the do-
main into overlapping subdomains with “ghost” regions based on
a graph-partition of the nodes that make up the finite element
mesh. In our implementation, the ghost region consists of elements
which are shared by neighboring processors. MPI is used to pass
solution information defined on the ghost elements to the neigh-
boring processor. METIS attempts to divide the domain to balance
the work-load among processors, to preserve locality of the ele-
ments and nodes within the subdomain and to minimize the “sur-
face-to-volume” ratio; that is, to keep the ratio of ghost nodes to
resident nodes low in order to reduce the communications over-
head. For improved load balancing, METIS allows the user to
weight nodes in the finite element mesh using an estimate of the
“work” related to the node; for example, by estimating the maxi-
mum amount of work performed in elements which are attached
to the node.

For a fixed global timestep, the parallelization of the DG method
is quite straightforward. Each element has a fixed amount of work,
takes the same timestep, and parallelization is achieved by each
subdomain communicating with neighboring subdomains at the
end of each Runge-Kutta timestep. The communication remains
constant throughout the simulation. For LTS, the situation is much
more complicated.

First, there is the question of load balancing. The amount of
work per element depends on the local timestep. We have at-
tempted to address this in METIS by weighting each node by a fac-
tor which depends on the local timesteps associated with elements
attached to the node. This factor is determined by the number of
sub-cycling steps required for the element with the smallest time-
step to go from time t" to time t"!. The local timestep may also
change during the course of the simulation, therefore in reality
the load should be dynamically re-balanced during the simulation.

Second, there are communication issues associated with LTS.
For example, consider a 1-D example as in Fig. 2. We picture four

n+1

elements labeledi — 2, i — 1, iand i+ 1. There are N = 3 timestep-
ping levels with M = 2. Elementsi — 2 and i — 1 are on level 1, with
the smallest timestep, element i is on level 2 and i + 1 on level 3.
Now assume elements i —2, i — 1 and i are on processor 0 (PEO),
andi— 1, iand i+ 1 are on the neighboring processor 1 (PE1), with
elements i — 1 and i in the ghost region. Both processors PEO and
PE1 compute the solution on these two elements, but element
i—1 is “owned” by PEO while element i is “owned” by PE1. For
the solution to be computed correctly in the ghost region, informa-
tion in element i — 1 must be passed from PEO to PE1 at each level 1
timestep, and the information in element i must be passed from
PE1 to PEO at all level 2 timesteps.

In general, each timestepping level must communicate informa-
tion with neighboring processors which share elements on the
same level, if these elements are within the ghost region. There-
fore, we have implemented a message-passing construct which is
level-dependent. This may reduce parallel efficiency in the sense
of strong scalability, since not all subdomains may have the same
number of elements on each level, in fact some subdomains may
have no elements on a given timestepping level. Or, subdomains
may have elements within a level but none in the ghost region,
while other subdomains may have many elements within a certain
level in the ghost region, and thus require message-passing. One
could try to address this problem by attempting to evenly divide
the elements on each level among the processors, however, this ap-
proach would most likely destroy locality, and result in a large
number of isolated elements on each processor.

In summary, determining an optimal parallel strategy for LTS is
complicated by several factors; however, as we will see in the re-
sults section below, LTS can still lead to an efficient and accurate
approach in parallel as it does in serial.

3. Applications to the SWE

The SWE are based on the three-dimensional Reynold’s aver-
aged Navier-Stokes equations for a Newtonian fluid. Averaging
these equations over the vertical depth of the water H and applying
kinematic and no-flow boundary conditions at the top and the bot-
tom, gives rise to the conservative form of the SWE:

OH . 0(uH) 0(vH)
E SP X ay - 07 (16)
o(u2H +1gH?
O(uH) 2 | O(urH)
ot P ox ay
=gS H%+(T§—T")+Fx (17)
P ox o ’
o( v*H +1gH?
A(vH) N 28 N d(uvH)
ot dy Poox
o ¢
:gHa—y+(ry—r;’)+Fy, (18)

where u and v are depth-average velocities, ¢ is the water elevation
relative to the geoid, # = H — ¢ is the bathymetry relative to the

i-2 i-1 i

i+l

Fig. 2. Example of LTS in one space dimension with N =3 and M = 2.
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geoid, g is gravitational acceleration, {7} " TJ,} are the surface
(wind) and bed (bottom friction) stresses, respectively, and Fy, ac-
counts for other external forces,such as Coriolis force and tidal po-
tential. The parameter S, is a spherical correction factor which
transforms the SWE in spherical coordinates ¢, / to Cartesian coor-
dinates x, y using an orthogonal cylindrical projection; see [19]. To
arrive at these equations, a number of assumptions have been
made; (1) the vertical acceleration of a fluid particle is small in com-
parison to the acceleration of gravity, (2) shear stresses due to the
vertical velocity are small and (3) the horizontal shear terms,
{0%u/ox?,&%u/dy?,9* v/dx*, 8% v/8y?} are small compared to vertical
shears, {8*u/dz2, &* v/dz?}.

For closure, the bed stress terms must be parameterized via the
depth-averaged velocities. The bed stress is often approximated by
linear or quadratic functions of the velocities, however, we have
used a hybrid form proposed by Westerink et al. [29] which varies
the bottom-friction coefficient with the water column depth:

/112 2 /112 2
T = uH Cfu , T =vH Cfu : (19)
x H y H
where,
Fy/fo
H fo\"?
C; = Chmin (1 + (%) ) . (20)

This formulation applies a depth-dependent, Manning-type friction
law below the break depth (Hpeq) and a standard Chezy friction law
when the depth is greater than the break depth. For the applications
below, Csnin is allowed to vary, since the bed surfaces change.

The wind surface stress is computed by a standard quadratic
drag law. Define

%i Dai

L _ ¢, Painwyw,, 21
0, = G ,00| | (21)
G o Par jwiw,, (22)
Po Po Y

Here W = (W,,W,) is the wind speed sampled at a 10-m height
over a 15 min time period and p,;, is the air density. The drag coef-
ficient is defined by Garratt’s drag formula [30]:

Cy=(.75+.06|W|) « 107> (23)

We also remark that the wind surface stress is capped so that its
magnitude is never greater than.002.

3.1. LTS in the SWE

The eigenvalues of the normal flux for the SWE are
Jip=uny+on, £+/gH, A3 =uny+ vn,. (24)

In shallow water simulations, one typically initializes the simula-
tion by assuming a “cold-start;” i.e., water elevations are initially
constant and water velocity is zero. Thus the largest eigenvalue ini-
tially is \/gH, and the local timesteps are computed by

hy
/&Hy

where Hy is the average water depth over the element. As the sim-
ulation progresses, the local timesteps may need to be adjusted
based on the water velocity. In many cases +/gH > |un, + vn,|
and the local timesteps can be fixed during the computation. For
more challenging applications, for example, modeling hurricane
storm surges, this is not the case. Therefore, at certain intervals dur-
ing the computation, we may recompute the local timesteps by

AtK =

(25)

45 b
[ 7500
- 6964.29
40 642857
- —1 589286
B — 5357.14
~ 35 1 482143
S I | 428571
3 [ | 3750
= - = 321429
s 0r — 267857
» [ | 2142.86
Q = 1607.14
® 25 107143
o I 535.714
S 0
A
> 20
15F
10F
Lo b by b b S b b

-95 90 -85 -80 -75 <70 65 -60
X (degrees longitude)

Fig. 3. Western North Atlantic Ocean domain. Tidal elevations are specified at the
eastern boundary, all other boundaries are land boundaries. Contours represent
bathymetry in meters relative to the National Geodetic Vertical Datum of 1988
(NAVDSS).

AtK = OCQ (26)
AK

where Jx = |ug| + \/gHy. Here |uy| is the magnitude of the cell aver-

age of velocity over the element K. The elements are then redistrib-

uted among the levels on each processor. That is, the number of

levels N and the ratio M is left fixed, but elements are allowed to

move between levels, depending on Aty.

3.2. Tidal flows in the Western North Atlantic Ocean

The first problem we consider is that of tidal flow in the Wes-
tern North Atlantic Ocean. The domain for this problem is pictured
in Fig. 3 and consists of part of the Atlantic Ocean, the Caribbean
Sea and the Gulf of Mexico. Tidal elevations are forced at the
60°W meridian open boundary. We utilize a standard tidal formula
consisting of 7 tidal components, three diurnal (K, 01, Q;) and four
semidirunal (M5, S;, N, K3). The data can be found in [31]; see also
Table 1 in [32]. We also impose tidal potential as a body force with
the same 7 components. The simulation is cold-started and the tide
is ramped-up using a smooth hyperbolic tangent ramp function
over a 5 day time period. Other parameters in the model are:

o Cpmin = 0025
® Hpreqr = 1.0 m
«f, =10

of, = 33333

These parameters were obtained from [32].

The discretization of the domain into a mesh consisting of
98,635 elements and 52,774 nodes is plotted in Fig. 4.

Numerical studies comparing the RKDG SWE solution to tidal
gauge data for this problem are given in [18]; there it was demon-
strated that the DG method accurately reproduces measured tidal
data. Here we consider various LTS scenarios and compare to RKDG
solutions with no LTS. These scenarios are representative of many
numerical experiments which have been performed in this study.
The details of three particular LTS cases are outlined in Table 1.
For example, LTS-Case 1 divides the domain into four timestepping
groups or levels, with M =2 between each level. The smallest
timestep At = 2 s, thus the timesteps on each of the four levels
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Fig. 4. Western North Atlantic mesh.

are 2, 4, 8 and 16 s, respectively. In the third column we see how
many elements are initially in each timestepping group, based on
the criteria discussed in Section 3.1. Note that for Case 1, the vast
majority of elements take the largest timestep of 16 s. Therefore,
for Case 2, we chose N = 7 to allow elements to take even larger
timesteps. In this case, elements can take a timestep as large as
128 s. Case 3 differs in that we take M = 4 and divide into 3 groups
with timesteps of 2, 16 and 64 s. This distributes more elements
among the latter two groups.

First, we examine whether LTS effects the accuracy of the solu-
tion. We compare the solution with no LTS to the LTS-Case 1 solu-
tion for a 10 day tidal simulation, to allow for the tide to fully
ramp-up and to compute several tidal cycles. In Fig. 5, we compare
the water elevation solution with no LTS with global timestep
At = 2.195 s to the solution obtained with LTS-Case 1, at four mea-
surement stations along the eastern coast of the US In this figure
we are plotting the water elevation in meters vs. time in seconds
over the 10 day simulation at specific points in the domain. These
points are located near Boston, MA (71.05°W,42.36°N), Charleston,
SC (79.93°W,32.78°N), Key West, FL (81.81°W,24.55°N), and Cor-
pus Christi, TX (97.22°W,27.58°N). We note that the solutions are
virtually indistinguishable, which indicates that LTS does not de-
grade the solution. We have examined solutions for other LTS
parameters and obtained very similar results.

Next we examine the parallel efficiency of the code with and
without LTS. In this problem, the local timesteps did not vary so
dramatically during the course of simulation to warrant a re-parti-
tioning of the mesh, therefore for the results presented here, the
parallel partition is static. We will compare execution times for a
1 day simulation. All tests were performed on the Bevo2! cluster
at the Institute for Computational Engineering and Sciences at The
University of Texas at Austin. First, to set a benchmark, we test the
parallel efficiency of the code with no LTS. In Table 2 we see that
the code exhibits near perfect speed-up to 32 cores. Beyond that
the parallel performance begins to degrade. Therefore, in comparing
the various LTS strategies with no LTS, we will focus on runs with 8,
16 and 32 cores.

1 Bevo2 is a 23 node compute cluster made up of Dell PowerEdge servers that
house 2x quad core 2.66 GHz Intel Xeon processors for a total of 184 processors. Each
node has 16 gigabytes of RAM, dual gigabit ethernet ports, and a single port Mellanox
III Lx Infiniband adapter attached to a QLogic SilverStorm Infiniband 24 port switch
capable of up to 20 Gb/s.

Table 1
LTS parameters for three different test cases.

Test N M Atpi # Elements in each level

case (sec)

1 4 2 2 436, 4456, 13468, 80005

2 7 2 2 436, 4456, 13468, 19262, 21720, 26168,
12855

3 4 4 2 4892, 32730, 60743

For the LTS method, to see an example of how the elements and
groups are split among processors, we show in Table 3 the distribu-
tion of elements among 8 processors (PEs) for LTS-Case 3. The
number of elements per PE includes ghost elements. We also com-
pute the total amount of “work” required on each PE to advance
the solution over one time cycle from t" to t"*'. This is obtained
as follows for Case 3: the number of elements on level 1 requires
16 timesteps to complete one time cycle, level 2 requires 4
timesteps, and level 3 requires 1 timestep. Therefore, on PEO, for
example, the amount of work is

16+ 701 + 4 % 5983 4 983 = 36131

as seen in column 3 of the table. For the work to be distributed
evenly among PEs this number should be roughly constant. We
see in Table 3 that the work is fairly evenly distributed among the
processors, with the maximum variation on the order of 10%. We
also remark that during simulations the element timesteps are
recomputed every 1000 timesteps, based on the formula given in
Section 3.1. This allows elements to change timestepping levels
during the simulation, and could effect the load balancing. How-
ever, for the three LTS cases considered, very few elements changed
timestepping levels during the course of the simulations, thus the
workload per PE remained essentially constant.

The parallel performance for the three LTS test cases is given in
Table 4. We first note that the parallel scaling is not as good as
without LTS, even though the run times are substantially reduced
for every case in comparison to the results given in Table 2. The
parallel efficiency for LTS drops off substantially between 16 and
32 PEs while no LTS still showed near optimal efficiency. The par-
allel scaling of LTS is limited by several factors. The number of ele-
ments on each level is not evenly distributed among PEs, due to
locality constraints within METIS. Furthermore, even if the number
of elements were evenly distributed, the computational efficiency
is limited by the surface-to-volume ratio on each level on each
PE. With LTS the surface-to-volume ratios could be worse on each
timestepping level than without LTS, meaning there is less compu-
tation and more message passing at each level. We remark how-
ever, that even with these limitations LTS on 32 cores (in the
best case) was a factor of 1.5 faster in compute time than no LTS
on 64 cores, with no appreciable difference observed in the
solutions.

3.3. Hurricane Ike storm surge forecast

One of the most challenging applications for coastal models is
the simulation of storm surge due to hurricanes. In previous work,
we have described the application of the DG method, with exten-
sions to include wetting and drying and internal barriers such as
levees, to the modeling of storm surge in the Gulf of Mexico [19].
In this section, we describe the application of LTS to a typical storm
surge event. In particular, we consider Hurricane Ike, which struck
the upper Texas coast in 2008.

The track of Ike is seen in Fig. 6. The storm progressed through
the Western North Atlantic, through the Caribbean Sea making
landfall in Cuba, and moved across the Gulf of Mexico, finally
making a second landfall at Galveston, TX in the early morning of
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Fig. 5. Time history of water elevation comparing no LTS and LTS-Case 1. Units on the horizontal axis are seconds, and the vertical axis is in meters.

Table 2 Table 4
Parallel performance and CPU times with no LTS for 1 day of simulation. Parallel performance with LTS for 1 day of simulation.
# Cores CPU time (min:s) Speedup LTS test case Number of PEs CPU time (min:s) Speedup
8 86:42 - 1 8 30:43
16 44:31 1.95 1 16 17:30 1.76
32 24:31 1.82 1 32 12:10 1.44
64 17:38 1.39 2 8 26:26 _
2 16 15:34 1.70
2 32 11:38 1.34
Table 3 3 8 32:34 -
Number of elements per PE on each timestepping level for 8 processors and the total 3 16 19:25 1.68
work, computed as the total number of element-timesteps needed to advance the 3 32 13:52 1.40

solution from time t" to t"*'.

PE # Elements in each level Total work
0 701 5983 983 36131
1 144 6124 9926 36726
2 288 3872 15652 35748
3 468 4773 8457 35037
4 617 5038 8943 38967
5 1725 1497 3589 37177
6 726 4404 8289 37521
7 1555 2865 2647 38987

September 13, 2008. By this time, Ike had high category 2 winds
but had an unusually large wind field and produced a category 4
storm surge in an area east of Houston, TX. In [19], we compared
results computed using the RKDG method with no LTS to data
taken from another model, namely the Advanced Circulation or
ADCIRC code, which was used to study Hurricane Ike in [33]. In this
section, we study a slightly different scenario, namely a “forecast”
of Ike using approximate wind fields generated from data obtained
from the National Hurricane Center, and the Holland hurricane

wind/pressure model developed in [34]. In this wind model, the
data given in the National Hurricane Center forecasts, namely the
location of the eye of the storm, the central pressure, the radius-
to-maximum winds, and the maximum sustained wind speed,
are used to compute a vortex-shaped approximation of the
hurricane wind and pressure field. This model is used in forecast
simulations of hurricane storm surges as described in [35], for
estimating surge as hurricanes approach land. Here we use the
so-called “best” track data; i.e, the actual hurricane track as
measured through the progression of the storm, as opposed to
forecast tracks given during the event. The purpose of this exercise
is to investigate the performance of the parallel DG code with LTS
in this complex scenario, and compare to results generated using
the no LTS, RKDG method described in [19].

The domain used in these simulations is similar to the domain
used in the previous section, but with large sections of the Texas
coast included; see Fig. 7. Here we include most sections of the
coast which are less than 50 feet above sea level, since these
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Fig. 6. Track of Hurricane Ike, taken from http://www.wunderground.com.
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Fig. 7. Western North Atlantic/Texas domain with bathymetry (m).

regions could be affected in a storm event. The contours in the fig-
ure represent bathymetry measured in meters. In Fig. 8, we zoom
in on the Galveston Bay region, the narrow channel in the figure
is the Houston Ship Channel, which connects the Port of Houston
to the Gulf of Mexico. The land regions shown in the figure are also
included in the computational domain.

We present results of simulations of a 5 day period during the
storm, beginning at 12:00 p.m. on September 9, 2008 and progress-
ing through 12:00 p.m. on September 14, 2008. The finite element
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Fig. 8. Galveston Bay with bathymetry (m).

mesh for these simulations consisted of 2,628,757 elements and
1,344,247 nodes, with most elements located in the Louisiana-
Texas inland regions and continental shelf. The mesh is highly
graded, with element areas on the order of several square kilome-
ters in the deeper oceanic basins, transitioning to element areas on
the order of 2000 square meters in the coastal regions of Texas and
Louisiana. For simulations with no LTS, a global timestep of.5 s was
used throughout the simulation. This was close to the minimum
timestep computed using the CFL criteria (14) with velocity of zero.
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Table 5
LTS parameters for scenarios 1 and 2 for Hurricane Ike.
LTS scenario N M At's
1 2 2 .5, 1.0
4 2 .5, 1.0, 2.0, 4.0

(a) Tke maximum water elevation: No LTS

(b) Tke maximum water elevation: LTS Scenario 1

(c) Difference

Fig. 9. Comparison of maximum water surface elevation in meters for Hurricane Ike
forecast. No LTS (top), LTS (middle) Scenario 1 and the difference (bottom).

We considered several LTS scenarios and present the results for
two such scenarios. The parameters used in these scenarios are
summarized in Table 5.

Scenario 1: Upon an initial check of the local CFL constraints on
each element, we determined that only a small fraction of ele-
ments required the minimum CFL timestep. The vast majority of
elements had a local CFL timestep of 1s or greater. Therefore,
LTS scenario 1 is a simple LTS simulation with two timestepping

31.5

31

30.5

Lat

30

29.5
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Fig. 10. Measurement locations X, Y and Z.

levels (N = 2) and with M = 2. We ran the simulation on the Ran-
ger parallel computer at the Texas Advanced Computing Center?
with 800 processing cores. In this case, there were 65,727 elements
in timestepping level 1 and 2,708,551 elements in timestepping level
2. These totals include elements in the overlap region between sub-
domains, therefore some elements are counted more than once. The
elements remained fixed within their timestepping level throughout
the 5 day simulation.

To compare the results of the LTS approach described above
with no LTS, we look at two types of results, contours of maximum
water elevation and hydrographs. The maximum water surface
elevation is computed as

’/’max(xvy) = gg?g%n(xvyv t)

This quantity is of interest since it indicates where storm surge had
the most impact over the course of the simulation. In Fig. 9, we
compare the two solutions (LTS vs. no LTS) over the impact area
(the upper Texas coast extending to southeastern Louisiana). We
also computed the difference between the two solutions. Overall
the agreement between the two solutions is quite close. There are
a few small differences in the solutions in some isolated elements,
primarily in regions which experience wetting and drying. These
differences are most likely due to sensitivities in the wetting and
drying algorithm used in the code.

We also compare hydrographs of solutions at three locations
along the upper Texas coast, where actual instruments were de-
ployed just before the storm, as described in [33]. These measure-
ment locations are labeled as X, Y and Z in Fig. 10 and are in the
region of maximum storm surge. The LTS and no LTS solutions
are plotted together in Fig. 11, where we observe that the solutions
are virtually identical.

Scenario 2: Upon further examination of the local CFL time-
steps, we found that most elements are able to take an even larger
timestep than 1 s, at least based on an initial estimate. Therefore, in
the second scenario we divided the domain into 4 timestepping
levels with M = 2, with timesteps ranging from .50 to 4.00 s by fac-
tors of 2. The number of elements in each group at time t = 0 is gi-

2 The Ranger system is comprised of 3936 16-way SMP compute nodes providing
15,744 AMD Opteron processors for a total of 62,976 compute cores, 123 TB of total
memory and 1.7 PB of raw global disk space. It has a theoretical peak performance of
579 TFLOPS. All Ranger nodes are interconnected using InfiniBand technology in a
full-CLOS topology providing a 1 GB/s point-to-point bandwidth.
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LTS scenario 1 data for Hurricane Ike simulation.

Timestep level At # Elements per level (t = 0)
1 5 56795
2 1.0 60158
3 2.00 521461
4 4.0 2043731
6
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Fig. 12. Number of elements in each timestepping level vs. time for Hurricane Ike
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ven in Table 6. Note that the vast majority of elements can take a
4 s timestep. In this case, we recomputed the local timestep by
checking the CFL condition at periodic intervals throughout the

computation. We chose to check and recompute local timesteps
roughly every .1 days during the simulation. Thus, during the
course of the hurricane, the elements can shift between timestep
groups. In Fig. 12, we illustrate this further, where we show specif-
ically how the number of elements within each timestepping level
varies with time. We note that Hurricane Ike made landfall be-
tween 3.5 and 4.5 days of simulation, and this is the time frame
during which most elements are shifted among timestepping
groups.

The results produced by the LTS solution were nearly identical
to those produced in LTS scenario 1 described above. In Fig. 13,
we show the maximum elevation solution over the impact area,
and the difference between the LTS and no LTS solutions for this
case. Overall the agreement between the two solutions is quite
close. As noted above, there are a few small differences in the solu-
tions in isolated elements, primarily in regions which experience
wetting and drying.

We remark that the water elevation hydrographs at Stations X,
Y and Z are virtually identical to those observed in Fig. 11 and we
do not reproduce them. In summary, the LTS method described
herein captures the maximum surge comparable to the RKDG
method with no LTS. We also remark that any attempts to run
the simulation with no LTS and a timestep larger than the global
CFL timestep of .527 s blew up early in the simulation. Therefore,
experimentally at least this was a tight bound on the maximum
allowable timestep for the standard RKDG method.

Finally, we discuss the parallel performance of the model with
and without LTS. Using 800 cores on Ranger; i.e., dividing the do-
main into 800 subdomains, and using a global timestep of .55,
the total compute time for the no LTS case was 930 min. The same
run using LTS scenario 1 took 586 min for a 37% reduction in wall
clock time. LTS scenario 2 took 432 min for a 53% reduction in wall
clock time. We also performed simulations of the no LTS case and
LTS scenario 2 on 1600 cores. The run times were 555 min and
240 min, respectively. Thus, no LTS exhibited a parallel speedup
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(a) Ike maximum water elevation: LTS Scenario 2

(b) Difference

Fig. 13. Maximum water surface elevation in meters for Hurricane Ike forecast. LTS
scenario 2 and the difference between LTS and no LTS solutions.

factor of 1.67 and LTS scenario 2 a factor of 1.8 for this particular
test case.

4. Conclusion

In this paper, we have investigated the LTS approach described
in [8] for some large-scale applications in shallow water flows.
These applications require the use of parallel computing, therefore
we extended the serial LTS method described in [8] to utilize par-
allel, distributed memory computing platforms. We have exam-
ined the accuracy and efficiency of the method for standard tidal
flow and for modeling hurricane storm surges. The method has
proven to be robust even in extreme, wind-driven events.

The parallel performance of the LTS method for different
choices of N and M is difficult to predict a priori. Since the element
sizes in the meshes that we are given and the initial water depths
both vary significantly over the domain, the local CFL constraints
also vary significantly over the domain. Thus, it is difficult to deter-
mine in advance the N and M which would optimize the parallel
performance. Our approach has been to test various values of N
and M over fairly short time intervals, on the order of .1 days,
before performing a full multi-day simulation.

Future work will focus on exploring further parallel efficiency of
the method for shallow water flows and other applications where
there are distinct separations in spatial discretization and temporal
scales.
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