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Rapid Assessment of Wave and Surge Risk during
Landfalling Hurricanes: Probabilistic Approach

Alexandros A. Taflanidis, A.M.ASCE"; Andrew B. Kennedy, M.ASCE?; Joannes J. Westerink®;
Jane Smith, M.ASCE*; Kwok Fai Cheung®; Mark Hope®; and Seizo Tanaka’

Abstract: A probabilistic framework is presented for evaluation of hurricane wave and surge risk with particular emphasis on real-time automated
estimation for hurricanes approaching landfall. This framework has two fundamental components. The first is the development of a surrogate model
for the rapid evaluation of hurricane waves, water levels, and run-up based on a small number of parameters describing each hurricane: hurricane
landfall location and heading, central pressure, forward speed, and radius of maximum winds. This surrogate model is developed using a response
surface methodology fed by information from hundreds of precomputed, high-resolution Simulating Waves Nearshore (SWAN) + Advanced
Circulation Model for Oceanic, Coastal and Estuarine Waters (ADCIRC) and One-Dimensional Boussinesq Model (BOUSS-1D) runs. For a specific
set of hurricane parameters (i.e., a specific landfalling hurricane), the surrogate model is able to evaluate the maximum wave height, water level, and
run-up during the storm at a cost that is more than seven orders of magnitude less than the high-fidelity models and thus meets time constraints
imposed by emergency managers and decision makers. The second component of this framework is a description of the uncertainty in the parameters
used to characterize the hurricane through appropriate probability models, which then leads to quantification of hurricane risk in terms of
a probabilistic integral. This integral is then efficiently computed using the already established surrogate model by analyzing thousands of different
scenarios (based on the aforementioned probabilistic description). This allows the rapid computation of, for example, the storm surge that might be
exceeded 10% of the time based on hurricane parameters at 48 h from landfall. Finally, by leveraging the computational simplicity and efficiency of
the surrogate model, a simple stand-alone PC-based risk-assessment tool is developed that allows nonexpert end users to take advantage of the full
potential of the framework. The proposed framework ultimately facilitates the development of a rapid assessment tool for real-time implementation
but requires a considerable upfront computational cost to produce high-fidelity model results. As an illustrative example, implementation of
hurricane risk estimation for the Island of Oahu in Hawaii is presented; results demonstrate the versatility of the proposed approach for delivering
accurate tools for real-time hurricane risk estimation that have the ability to cross over technology adoption barriers. DOI: 10.1061/(ASCE)
WW.1943-5460.0000178. © 2013 American Society of Civil Engineers.

CE Database subject headings: Hurricanes; Risk management; Waves; Probability; Storm surges.

Author keywords: Hurricane risk; Surge; Waves; Response surface surrogate modeling; Joint probability method.

Introduction

Hurricane surge risk assessment has received increased attention
in the past decade, partly in response to the destructive 2004, 2005,
and 2008 hurricane seasons (Dietrich et al. 2010; Kennedy et al.
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2011a, b). Conventional approaches to this assessment are based on
parametric or nonparametric analysis of data from historical storms
(Borgman et al. 1992) or on simulation of hurricane design events. A
different methodology, initially presented in 1975 (Ho and Myers
1975; Myers 1975) and frequently referenced as the joint probability
method, relies on a simplified description of hurricane scenarios
through a small number of model parameters (Resio et al. 2009).
Description of the uncertainty in these parameters, through appro-
priate probability models, leads to a probabilistic characterization of
the hurricane risk. This risk is ultimately expressed as a probabilistic
integral over the uncertain parameter space, and its estimation requires
numerical evaluation of the hurricane inundation for a large number of
scenarios resulting from the adopted probabilistic description of the
model parameters (Resio et al. 2009; Toro et al. 2007). This prob-
abilistic framework is increasingly being adopted as a tool for hur-
ricane risk evaluation (Irish et al. 2009, 2011; Niedoroda et al. 2008).
Other measures for such risk evaluation include the National Oceanic
and Atmospheric Administration’s (NOAA’s) maximum of maxi-
mum (MOM) storm surge levels for Saffir-Simpson hurricane cate-
gories 1-5 (www.nhc.noaa.gov) and probabilistic surge (P-surge)
estimates of surge exceedence likelihood for approaching hurricanes
based on Sea, Lake and Overland Surges from Hurricanes (SLOSH)
model simulations (Glahn et al. 2009).

A significant recent advance in hurricane surge modeling is
the development of high-fidelity numerical simulation models for
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reliable and accurate prediction of surge responses for specific
hurricane events or regions (Cheung et al. 2003, 2007; Resio and
Westerink 2008). These models permit a detailed representation
of the hydrodynamic processes, albeit at a greatly increased
computational effort. This development increases the computa-
tional cost for estimating the hurricane wave and surge risk sig-
nificantly because the models need to be evaluated for a large
number of hurricane scenarios. To alleviate this problem, a low-
costdimensional surge response function was proposed (Irish et al.
2009), but it only addressed the variation with respect to hurricane
storm size, intensity, and track and was restricted to hurricane
surge only and limited to specific locations of interest on the Texas
coast. Udoh and Irish (2011) recently presented preliminary dis-
cussions for extending these surge response functions to address
additional hurricane model parameters, namely, the forward speed
and heading.

This paper offers a versatile theoretical and computational frame-
work for evaluation of hurricane wave and surge risk with particular
emphasis on real-time automated estimation during landfalling hur-
ricanes and implementation for the Hawaiian Island of Oahu. We
offer significant advancements in that (1) risk for a given hurricane
scenario may be calculated rapidly for hundreds of thousands of
locations in a coastal region of interest and for any modeled quantity
representing hurricane impact (e.g., surge, wave height, run-up), (2)
all parameters used to describe the hurricane characteristics may be
varied over their appropriate ranges, and (3) the framework may be
used to develop automated risk-assessment tools that ultimately can
be used by end users without high technical expertise, thus crossing
over barriers for adoption of such advocated technologies. This
versatile framework has few constraints in its applicability; although
we consider the evaluation of hurricane risk for the Island of Oahu in
Hawaii, the proposed theoretical/computational developments may
be readily applied to other locations. The foundation of the frame-
work is the parameterization of each hurricane scenario by a small
number of model parameters and the development of a computa-
tionally efficient surrogate model for approximation of the impact
for any hurricane scenario. Simply put, the input hurricane param-
eters are the variables that drive a smart interpolation (based on
precomputed high-fidelity numerical simulations) of a hurricane re-
sponse surface (the response surface being the water surface eleva-
tion, wave height, or inundation line). A moving least-squares
response surface approximation is adopted for the surrogate model.
This selection provides the intended versatility of the framework,
does not rely on any assumptions for the variability of the hurricane
wave/surge response with respect to the hurricane model parameters,
and is efficiently implemented for any quantity representing the
hurricane impact (e.g., wave height, surge, inundation time, etc.).
The proposed framework ultimately facilitates rapid real-time risk
assessment, but it establishes this at a considerable upfront compu-
tational cost, namely, to perform high-fidelity simulations to create
the surrogate model.

During a landfalling hurricane, the National Hurricane Center
forecasts the most probable hurricane track (Fig. 1) and also pro-
vides standard climatologic errors for track, strength, etc. associated
with this prediction. This forecast leads to a probabilistic integral
quantifying hurricane risk that can be estimated in real time at a small
computational cost using the surrogate model. Leveraging this
computationally efficient framework, we establish an assessment
tool that allows nonexpert end users to take advantage of the full
potential of this methodology to assess risks. Fig. 2 presents an
overview of the methodology, which may be applied with little
change to various coastal regions. As an illustrative example, we
implement these methods for hurricane risk estimation on the Island
of Oahu in Hawaii and present results. The following sections
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Fig. 1. Uncertainty description for the track of a hurricane approaching
to Hawaii

describe the probabilistic framework, the high-fidelity hurricane
modeling, the surrogate modeling, and the automated risk assess-
ment before focusing on the application to Oahu.

Probabilistic Framework for Risk Quantification
and Estimation

Hurricane Modeling

In this framework, each hurricane event is approximated by only five
parameters, all corresponding to its characteristics at landfall: (1)
landfall location x,, (2) track heading 6, (3) central pressure c,, (4)
forward speed vy, and (5) radius of maximum winds R,,. These
variables ultimately constitute the model parameters vector x de-
scribing each hurricane scenario

X = [XO 0 Cp Vf Rm]T (l)

where HT = matrix transpose. The temporal and spatial variability of
the hurricane track and characteristics prior to landfall also can be
important, but directly incorporating this variability in the hurricane
description would increase the number of model parameters sig-
nificantly. Instead, this variability is addressed by appropriate se-
lection of the hurricane track history prior to landfall (i.e., giving the
track a typical curvature over time for the appropriate landfall
heading) so that typical variations in path are described adequately
based on historical data. If the sensitivity of wave and surge response
to such parameter variations is small, then this approach can address
this issue efficiently (Resio et al. 2009); sensitivity will differ in
different locations (e.g., Hawaii or Gulf of Mexico). Similar com-
ments apply with respect to tides; unless the tide level is included in
the model description, as another parameter in X, a constant tide level
must be assumed (Resio et al. 2009). In the application considered in
this study, we assume a high tide for all model runs.

To represent hurricane impact on the coastal region of interest,
and ultimately, to quantify risk, several response quantities may be
examined simultaneously in this framework. Examples of such
quantities are (1) the still water level (SWL), i.e., storm surge, de-
fined as the average sea level over a several-minute period, (2) the
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Fig. 2. Schematic for development of the framework

wave run-up level (WRL), defined as the sea level including run-up
of wind waves on the shore, (3) the significant wave height H;
(possibly along with the corresponding peak period T},), and (4) the
time that normally dry locations are inundated. In this study we will
focus on the first three. Once the response parameters of interest have
been determined, we let z(x) denote the vector of response quantities
[i.e.,z(x) is the response as a function of the spatial variables x and y].
This vector will be referenced herein as the response vector and will
be used to quantify hurricane risk. Each component of z(x) pertains
to a specific response variable (any of the four just described) for
a specific location. The augmentation of all these responses for
all different locations in our region ultimately provides the n.-
dimensional vector z. Thus the dimension of n, can be very large.

For a specific hurricane scenario described by the model pa-
rameter vector X, the hurricane impact [vector z(x)] may be accu-
rately estimated by numerical simulation once an appropriate
high-fidelity model is established (Resio and Westerink 2008;
Westerink et al. 2008). These models have a significant associated
computational cost, requiring thousands of computational hours
for analysis of each hurricane scenario. This is intensified by the fact
that for appropriately assessing the hurricane impact, the simulation
may need to extend five days or more prior to landfall. This is essential
for both numerical convergence and to capture all significant changes
in the wave and surge environment (Dietrich et al. 2010). This task
will be discussed in more detail in the following section.

For alleviating the computational cost associated with the risk
evaluation, a response surface surrogate modeling approach is de-
scribed in more detail in following sections. The surrogate model is
based on information provided by a number of evaluations (scenarios)
of the computationally intensive high-fidelity model (called support
points) and ultimately establishes an approximation for the hurricane
impact for any other hurricane scenario. For greatest accuracy and to
avoid extrapolation, the support points (scenarios simulated with the
high-fidelity model) need to span the entire value range of potential
parameters. When using the surrogate model for predictions, large
extrapolations are ultimately avoided by truncating each parameter
within the range defined by the available support points, expanded by
amoderate length (chosen as 25% here) in each direction. As such, the
initial selection for support points determines the region of model
parameter values for which the surrogate model can be used.

The approximation for z(x) established through the surrogate
model will be denoted by Z(x) herein. If z;(x) and Z;(x) denote the ith

components of vectors z(x) and Z(x), respectively, then the re-
lationship between them is

zi(x) = Zi(x) + e (2)

where e; = total prediction error established through the various
introduced approximations. This error can be decomposed into two
independent components:

e = & + (3)

where ¢; pertains to errors introduced by the surrogate modeling
approximation of the high-fidelity numerical model, and 7; pertains
to modeling errors introduced through the fundamental assumptions
established for the theoretical framework, i.e., the simplified de-
scription of the hurricane scenario through only five variables (rather
than its entire history) and to any approximations established in the
high-fidelity simulation model, e.g., exclusion of tides, accuracy of
bathymetry, etc. The study by Resio et al. (2009) provides a detailed
discussion for potential sources impacting 7;. As is standard, both
of these errors are assumed to be zero mean (because the contrary
indicates a bias in the modeling approach) Gaussian random variables
with standard deviations o, and o, respectively. Note that this
choice of probability distribution (Beck 2010; Taflanidis and Beck
2010) incorporates the largest amount of uncertainty (Jaynes 2003) in
terms of information entropy (Shannon 1948) under the constraints
that only the mean and variance are known. Based on Eq. (3), the total
prediction error then follows a Gaussian distribution with SD

0o = \Jod + 0} @)

The variance for the &; error can be estimated by comparison be-
tween the surrogate and high-fidelity models. For this purpose, a set
of hurricane scenarios is selected to act as validation points; o-?i then
corresponds to the average value of the difference [z;(x) — Zi(x)]*
over this set. Quantification of the variance for the #; error is more
challenging. It requires definition of a realistic set of regional
hurricane scenarios and, for each scenario, calculation of the re-
sponse, denoted Z;, and comparison with the response that corre-
sponds to the idealization of the scenario in terms of the established
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simplified parameterized framework z;(x) (Resio et al. 2009). The
variance for the n; error is then similarly given by the statistics of
the square difference [z;(x) — Z]*.

Risk Quantification

Hurricane risk may be quantified in terms of the response z(x)
provided by the surrogate model and the probability density function
p(x)describing the uncertainty in the input hurricane parameters.
For real-time risk evaluation, i.e., predicting the risk owing to an
approaching hurricane, p(x) may be constructed through standard
climatologic error estimates provided by the National Hurricane
Center ((http://www.nhc.noaa.gov/verification/verify4.shtml). This
information then can be used to adopt a probabilistic description for
the model parameters. In this case, each component of x can be
selected to follow an independent Gaussian distribution with mean
equal to the forecast quantities and standard deviation equal to the
associated statistical error. For long-term hurricane risk evaluation
for a region (Resio et al. 2009), p(x) is selected based on statistical
data or atmospheric models for the entire region (Emanuel et al.
2006), and it further incorporates information on occurrence rates for
hurricanes, not just on relative plausibility of the model parameters.
The study by Resio et al. (2009) includes a detailed discussion for
selection of p(x) for the Gulf of Mexico.

Risk is finally expressed as some desired statistic of the response
z, e.g., the probability that the wave height will exceed some specific
threshold or the median wave run-up. The exact selection used for
these statistics leads to definition of the risk-consequence measure
h[-]. Ultimately, for any component z; of the response vector, the
risk, denoted R;, is provided by the probabilistic integral

R = [z p(x)ax (5)

X

where X corresponds to the region of possible values for x. Through
appropriate selection of A[-], different risk quantifications can be
addressed through this framework. Appendix I provides further
details on this selection for 4[ - ].

Risk Estimation

The risk integral in Eq. (5) can be estimated by stochastic simulation
(Robert and Casella 2004). For the simplest approach (direct Monte
Carlo), and using N samples of x randomly selected from p(x), the
estimate for R; is given by

E:%ﬁh@ﬂ} (6)

k=1

where vector x* = sample of the uncertain parameters used in the
kth simulation. As N — o, then R; — R;, but even for finite, large-
enough N, Eq. (6) gives a good approximation for the risk given by
Eq. (5). The quality of this approximation is assessed through its
coefficient of variation & obtained by (Robert and Casella 2004)

1 N . 2
SQL_NEKW@M}_I o

VN 7

1

The estimation accuracy may be improved further by adopting some
advanced stochastic simulation approaches such as importance
sampling (Taflanidis and Beck 2008).

This stochastic simulation—based risk assessment facilitates an
efficient estimation of risk for different quantifications (different
selections for 4| - ]) because the response [Z;(x¥); k = 1, ..., N] needs
to be estimated only once; the various selected risk quantifications
then require merely estimation of the different risk-consequence
measures A[ -], which is computationally straightforward.

High-Fidelity Hurricane Response Evaluation

Hurricane Wave and Surge Response

For any given hurricane scenario, the parameter vector X along with
the chosen hurricane track history defines the wind and pressure
fields over time through a parametric hurricane model (Phadke et al.
2003). Using these wind and pressure fields, the surge and wave
response for the entire coastal region of interest can be calculated
with a high-fidelity model, which for this study is Simulating Waves
Nearshore (SWAN) + Advanced Circulation Model for Oceanic,
Coastal and Estuarine Waters (ADCIRC) (Dietrich et al. 2010, 2011).

ADCIRC solves the shallow-water equations for water levels and
the momentum equations for currents. The variables are defined on
unstructured triangular finite-element grids at the vertices (Luettich
et al. 1992; Westerink et al. 2008). The model has been applied
extensively along the Gulf and East coasts of the United States to
study hurricane storm surge (Bunya et al. 2010; Dietrich et al. 2010;
Tanaka et al. 2011; Westerink et al. 2008). ADCIRC is applied in
vertically integrated mode for these computations. Waves are com-
puted using the unstructured version of the SWAN phase-averaged
wind-wave model, which solves for wave action density in time,
geographic space, and spectral space. Source and sink terms account
for wave growth by wind; dissipation owing to whitecapping, surf
breaking, and bottom friction; and nonlinear interaction between
spectral components in deep and shallow waters. The unstructured
grid version of SWAN is based on triangular elements with the action
density function defined at the vertices (Zijlema 2010).

Waves and circulation interact despite being well separated in
frequency space. As wind waves transform, either through growth or
dissipation, they impart a force on the upper portions of the water
column known as the wave-radiation stress. This drives currents and
increases the still water level (wave setup) along the coast and in-
creases inland flood propagation. Water levels have been shown to
increase by at least as much as 35% owing to local wave-driven setup
on U.S. mainland coasts (Dietrich et al. 2010; Resio and Westerink
2008), but larger contributions are expected in Hawaii because the
steep offshore slopes increase the breaking heights of nearshore
waves. In addition, waves affect vertical mixing of momentum and
therefore can influence the vertical structure of the currents as well as
the bottom stress. The water surface elevation and currents also impact
the wind-wave propagation through the depth of the water column and
wave-current interaction. SWAN + ADCIRC has been fully integrated
into a comprehensive modeling system that allows full interaction
between model components. Because the variables for both models
are defined at identical locations (i.e., vertices) and run on identical
grids, no interpolation is performed between the two models. Fur-
thermore, the combined SWAN + ADCIRC code is implemented in
a highly efficient parallel environment (Dietrich et al. 2010).

Wave Run-up

Wave action can increase inundation considerably in the swash
zone, which is intermittently wet and dry from wave run-up and
drawdown. Run-up parameterizations exist for simple geometries,
such as for a one-dimensional planar beach or a breakwater (Van Der
Meer 2002), but steep island bathymetries/topographies tend to be
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much more complex. Phase-resolving Boussinesq models do a good
job of resolving and simulating the setup, run-up, and swash for
arbitrary topographies (Chen et al. 2000; Kennedy et al. 2000; Nwogu
1993; Nwogu and Demirbilek 2010). However, full two-dimensional
Boussinesq models are too computationally expensive to be used over
the large areas and for the large numbers of computational runs re-
quired to evaluate inundation over the entire coastal region of interest.

Given this limitation, an approximate approach is adopted in
which a large number of one-dimensional transects are defined across
the shoreline in the region of interest. A three-dimensional array of
still water levels and wave parameters is then defined at the offshore
end of each transect, with values based on the anticipated wave en-
vironment characteristics provided through the SWAN + ADCIRC
runs. One-dimensional Boussinesq model analysis then is performed
for all these parameter combinations, yielding a prediction for the wave
run-up along each transect using the One-Dimensional Boussinesq
Model (BOUSS-1D) (Demirbilek et al. 2009; Nwogu and Demirbilek
2001). These results then provide an estimate of maximum inundation
distance along that transect (using as reference point the offshore end of
the transect) for any wave and water level input required for the risk
assessment.

If z,,; is the wave run-up at transect j and H;, T, and z,; are the
corresponding wave height, wave period, and still water level, re-
spectively, then this approach leads to the mapping

zwj = 8(Hyj, Ty, 2| D) (8)

where D = data obtained through the Boussinesq analyses for each
transect, and g(-) = chosen interpolation mapping.

Response Surface Surrogate Modeling

A response surface (Myers and Montgomery 2002) surrogate model
approach is adopted here to approximate in real time the response
z obtained by the computationally expensive ADCIRC + SWAN
numerical model. This is established by expressing each z;(x), where
x is the n, = 5-dimensional vector defining the hurricane charac-
teristics, through j=1,..., NB preselected basis functions bj(x)
through introduction of coefficients a;{x}:

NB T
%(x) = 3 bj(®)ay{x} = b(x) a;{x} ©)

j=1

where b(x) and a;{x} = vectors containing the basis functions and
coefficients, respectively. A common choice for basis functions is
a complete second-order approximation

1y Ny Ny
7i(X) = aip{x} + X ap{x}x; + > S ag{x}ang;
j=1 i=1k=j

NB — ny(ny + 3) + 2

2
(10)
leading to
b(x) = [1 X1t Xp, x% Xixp vt xi]
aip{x} apn{x} amAx}  ami{x}
a,'{X} =
ajin{x} Qi {X}

(11)

The coefficients a;{x} are calculated by initially evaluating z;(x)
(through the high-fidelity numerical model) for a set of hurricane

scenarios with characteristics spanning the entire region of interest
for x (representing probable and significant future hurricane sce-
narios) and then by minimizing a weighted mean squared error over
these scenarios between z;(x) and the approximation established
through Eq. (9) (Choi et al. 2001; Myers and Montgomery 2002).
The weights in this mean squared error are also a function of x (what
is formally known as moving least-squares response surface ap-
proximation); this improves the efficiency of the approximation by
giving higher importance to high-fidelity hurricane scenarios
(support points) that are similar to the new scenario that we are trying
to approximate (Taflanidis 2012). Appendix II provides further
details on these tasks. Ultimately, the approximation established
through the moving least squares response surface is given by

Zi(x) = b (x)M ™~ {x}L{x}F; (12)

where matrices M{x}, L{x}, and F; are defined in Appendix II and
depend on the weighting functions selected for the interpolation
as well as vectors b(-) and z( - ) evaluated at the locations of the
support points. The approximation for the entire vector z is estab-
lished by approximating each z; through Eq. (12) and augmenting
the results in vector format. This is ultimately expressed in a sim-
ple mathematical form as

2 = b (x)M "{x}L{x}F, whereF = [F| F, - F,|
(13)

This is a computationally inexpensive approximate model (based
only on matrix manipulations); thus it can be exploited for real-time
predictions but requires that a large number of high-fidelity model
simulations be performed in advance (this information is ultimately
included in F). Note that information from models runs (SWAN +
ADCIRC) is only incorporated in F; the rest of the matrices in
Eq. (13) are independent of any model. As such, the approach is
extendable to any output of interest and can be easily augmented
to include information from additional high-fidelity simulations as
they become available.

Finally, the statistics of the prediction error owing to the response
surface surrogate modeling can be approximated by the statistics of
the difference [z;(x,) —Zi(X,)] over any sample set of hurricane
scenarios described by [x,,, p = 1, ..., Ng] chosen to act as validation
points for the response surface. This leads to the following
maximum-likelihood estimate for the prediction error SD (Grimmett
and Stirzaker 2001)

7o = i35 )5 )] (14

This completely defines the probability model for the prediction
error &; because it has already been assumed to follow a zero mean
Gaussian distribution.

Automated Risk Assessment

The theoretical/computational developments in the proposed frame-
work share one significant drawback: their complexity creates a
technological barrier that effectively isolates them from nonexpert
users. As a result, these advances may not translate directly to the
intended benefactors of the risk-assessment framework (decision
makers) and the constituents they serve (public at large). To reduce
this barrier between this methodology and end users, automated
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Fig. 3. Graphical user interface for automated risk-assessment tool

risk-assessment tools can be developed by leveraging the compu-
tational simplicity and speed of the proposed surrogate model,
which is based only on simple matrix manipulations. These resulting
stand-alone tools require minimum computational resources to run
because they perform only simple mathematical manipulations
expressed through Egs. (6) and (13), as well as access to the database
of high-fidelity model runs. Fig. 3 shows the graphical user interface
of the tool developed for the illustrative example that will be
considered next, which examines inundation risk over the coastline
of Oahu for an approaching hurricane. Through this tool, the user can
define track and strength characteristics [and thus p(x), as discussed
earlier] and then request evaluation of the response [z;(x¥),
k=1,...,N], which is rapidly computed based on the surrogate
model [Eq. (13)]. The user then can select some risk quantification
for a specific response of interest (e.g., probabilistic mean surge or
wave height when a storm is 48 h from landfall), which defines /[ - ],
as discussed earlier, and finally request calculation of the risk based
on Eq. (6). Ultimately, such tools allow nontechnical end users to
leverage the full power of the proposed risk-assessment framework
and can be used for planning emergency responses during real
hurricane events approaching landfall or for making long-term
planning decisions based on fictitious scenarios.

Application to Real-Time Risk Estimation for Oahu

The framework developed in the preceding sections is demonstrated
for the real-time hurricane risk estimation for Oahu. The computa-
tional domain developed for this study encompasses a large portion
of the northern Pacific Ocean from 0 to 35° north and from 139 to
169° west. The unstructured Hakou-2010-r2 grid resolves the deep
ocean with 10-km elements, incorporates all the main Hawaiian
Islands (Hawai’i, Maui, Kaho’olawe, Lana’i, Moloka’i, Oahu,
Kauai, and Ni’ihau), represents Oahu and Kauai with significant
detail up to 30-m resolution, and extends inland to the 4-m contours.
Fig. 4 shows the bathymetric details of the grid close to the islands
of Oahu and Kauai. The grid incorporates 1,590,637 vertices and
3,155,738 triangular elements. The coarsest resolution at the do-
main edge is 10 km, and the finest resolution of 30 m is found in
complex coastal areas and overland. Bathymetric and topographic
data applied to the grid came from a variety of sources. Deepwater

bathymetric data came from the General Bathymetric Chart of the
Oceans, Earth Topography, and NOAA’s Laboratory for Satellite
Altimetry. Scanning Hydrographic Operational Airborne LiDAR
Survey (SHOALS) data were used from shore to a depth of 40 m,
whereas in deeper areas, multibeam data from the University of
Hawaii School of Earth Science and Technology were used. Ad-
ditionally, in certain bays and harbors, data were taken from nav-
igation charts (variable resolution, NOAA National Ocean Service,
multiple years). On shore, topographic data up to the 15-m elevation
contour were taken from LiDAR data sets taken by FEMA and the
U.S Army Corps of Engineers (USACE). Topographic data from
the USGS National Elevation Dataset covers the rest of Oahu and
Kauai.

For the numerical simulation, SWAN applies 10-min time steps,
whereas ADCIRC applies 1-s time steps. A SWAN + ADCIRC sim-
ulation ran in 16 wall-clock min/day of simulation on 1,024 cores on
Diamond, a 2.8-GHz dual-quad core-based cluster with a 20-Gb/s
InfiniBand network (¢http://www.erdc.hpc.mil/)). The Hakou-2010-
r2 model (Kennedy et al. 2012) was validated by simulating tides
and by hindcasting Hurricane Iniki (in 1992) and comparing with
measured water levels as well as wave data. More details on the
model itself and the validation may be found in Kennedy et al.
(2012).

High-Fidelity Simulations

Based on historical storms and in collaboration with the National
Weather Service (NWS) Central Pacific Hurricane Center, a suite of
hurricane scenarios was created for surge and wave modeling using
SWAN + ADCIRC. These scenarios provide the information re-
quired for building the surrogate model and were chosen so that they
cover future hurricane events that are anticipated to have significant
impact on Oahu. Five basic storm tracks were considered, repre-
senting different angles of final approach 6, as shown in Fig. 5.
Landfall was defined to correspond to the point where each hurricane
crosses 21.3° north, and six different landfall locations x, were
chosen for the grid of storms corresponding to 157.7, 157.9, 158.1,
158.3, 158.6, and 158.9° west. Three different values for the central
pressure ¢, were used, 940, 955, and 970 mbar, and similarly, three
different cases for the forward velocity v, were considered, 7.5, 15,
and 22.5 knots. Finally, two different values were considered for the
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Fig. 5. Basic storm tracks considered for the study

radius of maximum winds R,,: 30 and 60 km. These values ulti-
mately define the range of hurricane characteristics for which the
surrogate model can be applied with confidence; for example, and
using the 25% allowed extrapolation discussed earlier, for the central
pressure, the surrogate model can be used to forecast storms between
932.5 and 977.5 mbar.

A suite of 350 storms then was selected to efficiently describe the
entire grid of hurricane scenarios generated through these potential
parameter values. The response for these storms then was computed
by the SWAN + ADCIRC model, a process that ultimately required
more than 600,000 computational hours. Such simulations can be
performed outside hurricane season, removing real-time forecasting
constraints on time to execute runs and perform quality control. All
results of interest were stored, including maximum significant wave
heights and surge levels throughout each simulation. Fig. 6(a) shows
illustrative results of contours for the wave height obtained from one
hurricane scenario through the high-fidelity model analysis. All anal-
yses were performed assuming high tides of 0.4 m, taken to represent
the worst-case scenario for the hurricane risk in this region.

For the wave run-up, 750 transects were considered around the
island, with each transect extending up to 1 km inland and 2 km
offshore. For each transect, a matrix of 169 combinations of wave
height and water level was created, with maximum and minimum
parameter values selected based on the information from the large-
scale runs. For each case, the inundation then was predicted based
on the Boussinesq model analysis, which produced the run-up data
D for development of the mapping described in Eq. (8).

Response Surface Surrogate Model

Using the information from the precomputed 350 storms, a moving
least-squares response surface surrogate model was built. Full
quadratic basis functions were chosen for x,, 6, ¢,, v, and linear
basis functions for R,,, and the common Gaussian weight function in
Eq. (25) is adopted with D, adaptively selected so that it includes for
each x 150 support points (out of the possible 350). To evaluate the
fit of the surrogate model through the average error from Eq. (28) and
further estimate the prediction error variance based on Eq. (14), an
additional 20 hurricane scenarios were generated to represent the
validation set for the surrogate model. The characteristics for these
scenarios were randomly generated within the possible values for the
hurricane model parameters x. The average (over the entire region of
interest) mean error of the response surface approximation was 4%
for the significant wave height and 3% for the still water level. Over
the entire domain, the average prediction error SD o, is 0.31 m
for the significant wave height and 0.14 m for the still water level,
but both these quantities vary significantly over the region of
interest.

A comparison of significant wave height between the high-fidelity
numerical model evaluation and the optimal response surface surro-
gate model prediction is shown in Fig. 6 for a sample hurricane track
with parameters x = [158.1° 210° 955 mbar 22 knots 30 km]. The
comparison between Figs. 6(a and b) shows good agreement, which
further demonstrates the accuracy of the established response surface
approximation. It should be noted that the cost of the surrogate model
for a single evaluation is at least 107 times less than that for the high-
fidelity models, which is what allows it to be used for real-time
prediction on a PC.

This surrogate model then is used to predict the response, in
particular, the still water level Zy and significant wave height
Hg;, for any desired hurricane scenario and simultaneously for all
locations of interest around the island. The interpolation scheme of
Eq. (8) then can be used to calculate the wave run-up for each transect
using the surrogate model predictions of wave and water level
properties as input.

In this study, the n; modeling error, introduced through the
fundamental assumptions established for the theoretical framework
and the approximations established in the high-fidelity simulation
model (e.g., high tide assumption), is ignored. Thus, e; is completely
defined by knowledge of ¢;. This choice is necessitated by the lack of
sufficient data for quantifying its SD o, , as discussed previously.
An alternative approach would have been to select an appropriate
value for o, based on engineering judgment.

Risk Assessment

The established response surface surrogate model can be used to
estimate hurricane risk efficiently. For real-time assessment, the
probability distribution for the model parameters p(x) can be based
on information provided by the NWS prior to landfall, information
that is updated during regular time intervals as the storm approaches
landfall. As discussed earlier, an independent Gaussian distribution
with the mean prediction of the NWS and standard deviation equal
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Fig. 6. (Color) Significant wave height contours for a single hurricane
track with parameters x = [158.1° 210° 955 mbar 22 knots 30 km] cal-
culated by (a) high-fidelity numerical model and (b) response surface
surrogate model

to the associated statistical error is adopted in this study. This
probability model then can be used to quantify risk as in Eq. (5). The
risk is then estimated through stochastic simulation by Eq. (6) using
the previously developed surrogate model to evaluate the response
for each configuration x = [x, 6 ¢, v¢ R,]". For automated imple-
mentation of this risk estimation, a stand-alone tool is developed
(Taflanidis et al. 2011), as shown in Fig. 3. The model accepts as
input the parametric configuration x for the most probable hurri-
cane track, as well as the estimate for time until landfall, which is
used to select p(x). Based on this input and the precomputed in-
formation from the high-fidelity simulations, the surrogate re-
sponse surface approximation can be used to predict either the
output for the most probable hurricane (i.e., single evaluation of
surrogate model) or the hurricane risk, estimated as the threshold
with a prespecified probability of exceedence (i.e., multiple
evaluations). In the latter case, N =2,000 evaluations of the
surrogate model are used for the stochastic simulation of Eq. (6).
The outputs from the risk estimation then are presented graphically
as contours for the surge and wave run-up inundation around the
island, as well as contours for the significant wave height in the
region around Oahu.

A sample implementation is presented for the hurricane illus-
trated in Fig. 3 approaching landfall on Oahu. The mean values for
hurricane parameters (e.g., landfall longitude, heading at landfall in
degrees, central pressure in millibars, forward speed in knots, and
radius of maximum winds in kilometers) are

Xmean = [158.12° 205° 950 mbar 16 knots 45km]T (15)

For defining p(x), these parameters are assumed to follow inde-
pendent Gaussian distributions with the mean value givenin Eq. (15)
and the SD selected based on prediction errors for time until landfall
equal to 42 h

ox = [0.28° 17.5° 105 mbar 3.5 knots 2.5 km)”  (16)

Results are shown in Figs. 7-12, for the general area around the
Hawaiian Islands, as well as zoomed in around Oahu. Figs. 7 and 8
include the expected value for the significant wave height; Fig. 9, the
probability that the significant wave height will exceed 9 m; and
Fig. 10, the significant wave height with 10% probability of being
exceeded during the storm. Similarly, Figs. 11 and 12 show the still
water level and wave run-up level contours around Oahu with 10%
probability of exceedence.

The total time needed for this risk assessment is 6 min on a 3.2-
GHz single-core processor with 4 GB of random-access memory
(RAM). This corresponds to a tremendous reduction of computa-
tional time compared with the high-fidelity model, which required
more than 1,500 h for analyzing a single hurricane scenario and
ultimately is the foundation that allows for the risk quantification
and assessment described here. Thus a risk computation requiring
independent evaluations of the surrogate model for N = 2,000
different scenarios is still approximately 10* times faster than ev-
aluating a single hurricane scenario using the high-fidelity models
SWAN + ADCIRC. The average (over all grid points) coefficient of
variation for the risk estimate is 0.42% for the expected value of the
significant wave height (Figs. 7 and 8) and 6.71% for the significant
wave height with 10% probability of being exceeded (Fig. 10). The
latter corresponds to a rare risk description, which is why it is
characterized by a larger coefficient of variation. The small es-
tablished coefficient of variation along with the required small
computational time for establishing these risk estimates and the
accuracy of the surrogate model illustrate the efficiency of the pro-
posed theoretical and computational scheme. It should be stressed
that the proposed approach explicitly incorporates in the analysis
the prediction error established through the surrogate modeling.

Summary and Conclusions

A probabilistic framework has been developed here for hurricane
risk estimation with particular emphasis on real-time risk evaluation.
This methodology uses hundreds of high-fidelity model runs, an ef-
ficient surrogate model that reproduces the high-fidelity model well,
and a probabilistic description of uncertainty to estimate wave, water
level, and run-up probabilities at a much reduced computational cost.
The framework is efficient enough that it may be used easily for
prediction of risk as a hurricane approaches landfall. However, there is
a large upfront computational cost to evaluate the high-fidelity
models.

As an illustrative example, implementation of hurricane risk
estimation for the Island of Oahu in Hawaii was presented. Results
demonstrate the versatility of the proposed approach for creating an
efficient tool that is simple enough to cross over technology adoption
barriers. In this stand-alone tool, the interface provided to the user
requires only a basic understanding of the five parameters used for
the simplified description of each hurricane scenario. The total time
needed for risk assessment using the developed stand-alone tool was
4 min on a 3.2-GHz single-core processor with 4 GB of RAM. High
accuracy was established for the risk estimates since the coefficient
of variation for such estimates using 1,500 sample runs was very small.
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Fig. 7. (Color) Expected (i.e., average) significant wave height
contours in the area around the Hawaiian Islands for a storm 42 h
from landfall with most probable storm parameters at landfall
Xmean = [158.12° 205° 950 mbar 16knots 45km]T
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Fig. 8. (Color) Expected (average) significant wave height contours
zoomed in around Oahu

This framework may be applied readily to other regions and other
problems where high-fidelity model runs may be run in advance, but
risk estimates are required in real time. This methodology also may
be readily extended to include derivative products such as building
and infrastructure damage during a storm or loss estimates. Closely
related examples include tsunami inundation warning and model-
ing, where a similar framework could be implemented with few
structural changes.

Appendix I. Risk Quantification

This appendix provides details for selection of 4] -] to address dif-
ferent risk quantifications. For example, if R; corresponds to the
expected value (average) for z;, then we have

R = Jz,-(x)p(x)dx = ”[Z»(x) + eilp(x)p(ei)dxde;  (17)
X EX

where E; = range of possible values for ¢;. Using the assumption
that prediction error is uncorrelated from x and that it is zero mean,
we get

R = J Zi el dxdel JJe,p x)p(e;)dxde;
EX EX
= J Z dx + Je[p(ei)dei = in(x)p(x)dx (18)
X E X

which means that 4[Z;(x)] = Z;(x) in terms of the risk quantification
of Eq. (5). If, alternatively, R; corresponds to the probability that
some z; will exceed some threshold (3;, then

Ro=Pazpl= | pwax= || plxp(e)deas
z(x) > B; LX) +e > B,

(19)
Using the assumption that prediction error is uncorrelated from
x and that its distribution is symmetric, we get

Probability

225

22

215

21

(@) —159.5-159-158.5-158 —=157.5-157 —-156.5

09 219
08 21.8
07 H17k

216

21.5 A
214}

213}

01 212

(b) —158.4 —158.2-158 —157.8—157.6—-157.4

Fig. 9. (Color) Probability contours that the significant wave height will exceed 9 m (a) in the area around the Hawaiian Islands and (b) zoomed in

around Oahu
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Fig. 10. (Color) Significant wave height contours with 10% probability
of being exceeded in the area around the Hawaiian Islands
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Fig. 11. (Color) SWL contours with 10% probability of exceedence
around Oahu, with magnification of Pearl Harbor and airport region
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Fig. 12. (Color) WRL contours with 10% probability of exceedence
around Oahu, with magnification of Pearl Harbor and airport region

R = J J p(ei)de,}p(x)dx
X _e,->/3i—2,-(x)
L
|| | plender|pax = [r. i - Blpax
XL —= X

(20)

where F,,(Z; — B;) = cumulative distribution function for the model
prediction error ¢;. Thus, in this case, A[Z;(x)] = F,,[zi(x) — Bi]
in terms of the risk quantification given by Eq. (5). This sim-
plifies to

zi(x) = Bi

T,

M) = @ 21)

for the proposed case of Gaussian distribution for the model pre-
diction error, where ®[-] denotes the standard Gaussian cumulative
distribution function. Note that this measure explicitly includes
model error estimates because model predictions less than the
threshold f3; still may have a small probability of exceeding the
threshold, and vice versa. As the model prediction error approaches
zero, the risk measure collapses to zero if Z;(x) <f3; and one if

%i(x) > B;.
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Appendix Il. Response Surface Surrogate Modeling

This appendix provides further details on response surface sur-
rogate modeling. The coefficients a;{x} for the surrogate model
[Eq. (9)] are calculated by initially evaluating z;(x) in a set of
NS > NB hurricane scenarios (called support points for the sur-
rogate model) [x;,/ = 1, ..., NS] and then by minimizing the mean
squared error over these points between z;(x) and the approxi-
mation established through Eq. (9) (Myers and Montgomery
2002). In the moving-least-squares (MLS) approach, the coef-
ficients depend on x and are selected by minimizing a weighted
sum of squared error with weights that are a function of x
(Taflanidis 2012)

2
Jrix}y = 05 wix} [Ei(xr) — zi(xi)]
= [Ba;{x} — F})' W{x}[Ba;{x} — F}] (22)
where the following quantities have been introduced

B = b(x)-blus)]s Fr = lalx)atw)l )
Wix} = diag{w[d(x;x1)]"-wld(x;xys)]}

and wld(x, x;)] is a weight function that depends on the distance

d between the point x for which the approximation is established

and each of the support points

d(x;x;) = \/EJ”: (x5 — xj,l)zvf = \/[v(x —x7)) v(x — x);
V= diag(vl"'vm)
(24)

with v; representing the relative weight for each component of x;
(Taflanidis 2012). The introduction of the weights w{d} aims at
reducing the approximation error at each point by performing
a weighted local averaging of the information obtained by the sup-
port points that are closer to it. Without these weights, the coefficient
vector a; would be constant over the whole domain for x, which
means that a global approximation would be established (global
least squares). The efficiency [i.e., fit to z;(x)] of global approx-
imations depends significantly on the selection of the basis
functions, which should be chosen to resemble z;(x) as closely as
possible. Such a selection is not always straightforward. The
moving least squares circumvents such problems by establishing
a local approximation for a;{x} around each point in the in-
terpolation domain. This leads to a smaller dependence of the fit on
the type of basis functions used (Breitkopf et al. 2005). On the other
hand, the efficiency of the moving-least-squares interpolation
depends on the weighting function chosen. This function should
prioritize support points that are close to the approximation point
and should vanish after an influence radius D,. This radius should
be selected so that a sufficient number of neighboring support
points are included to avoid singularity in the solution for a;{x}.
This means that D, should include at least NB points. As weighting
function in this study, the exponential type of function

w{d} = (e—(d/cD)“’ _ e—(l/c)”)/(l 3 e—(l/c)Zk)
ifd<D; = 0 else (25)

isselected, withc = 0.4 and k = 1 (Gaussian). The relative weights
v; ultimately define the moving character of the approximation
within the different directions in the X space and should be chosen
to (1) establish a normalization for the different components of x

but, more important, (2) provide higher importance for compo-
nents that have a larger influence on the values of z;(x) (Taflanidis,
2012).

Finally, the minimization of Eq. (22) is a standard quadratic
optimization problem and yields solution

ai{x} = M (X)L{x}F; (26a)

where

M = B’W{x}B and L{x} = B"W{x} (26b)

Ultimately, D, in Eq. (25) should be selected so that M is invertible.
Finally, Eq. (9) yields

Z(x) = b (M {(xJL{x}F; (27)

The fit of the response surface approximation may be judged by
selecting a number of hurricane scenarios to represent the validation
points (control points), denoted by x,, p=1,..., Ng, and then
evaluating the mean error ME, given by (Myers and Montgomery
2002)

N
ME = 35°%

(%) ~5(%)| /Sh ) 8)
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