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The accurate generation and absorption of water waves in phase-resolving models are critical issues in
representing nearshore processes. Here, we present a source function method for combined wave generation
and absorption using modified sponge layers. This technique can be easily adapted to a wide variety of systems,
and does not require the solution of Green's functions but rather the simpler knowledge of solutions for free
waves. These solutions may be linear or nonlinear, regular or irregular, and generated waves can be made
arbitrarily accurate through simple selection of sponge layer coefficients. Generating–absorbing sponge layer
systems are shown to have a close correspondence to relaxation zones for wave generation if relaxation
coefficients are chosen appropriately.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The generation and absorption of waves at the boundary are impor-
tant for the numerical simulation of Boussinesq and other water wave
models. Relatively straightforward methods used by Nwogu (1993),
Kennedy and Fenton (1997) and many others specified the incident
wave information at the wavemaker boundary, with either no special
treatment for reflected waves or approximate boundary conditions.
These types of boundaries are compact and save on computational ex-
pense, but treatment for outgoing waves is by necessity approximate.
Other techniques include various widely-used internal generation
methods using either distributed or point sources in the governing
equations (Chawla and Kirby, 2000; Larsen and Dancy, 1983; Skotner
and Apelt, 1999; Wei and Kirby, 1999). Relaxation zones (Madsen
et al., 2003), where an imposed solution is gradually transitioned to
the governing equations over some distance, have been used both to
generate and absorb waves in high accuracy Boussinesq models.

Associated with the wave generation problem is that of absorbing
reflected or other waves that approach open boundaries. Here, by far
the most common techniques are the various sponge layers (e.g.,
Chawla and Kirby, 2000; Larsen and Dancy, 1983) that extract mass,
momentum, or both from the system, damping solutions to a steady-
state with no waves. For nonlinear wave generation, both direct impo-
sition of boundary fluxes and relaxation zones have been demonstrated
to work, but accurate nonlinear wave generation using internal sources
is quite difficult, and no good solutions exist.

This paper introduces and tests a combined generating–absorbing
condition for phase-resolving wave models that is straightforward to
dy).

ghts reserved.
apply to awide variety of systems. The condition does not require deriva-
tion of Green's functions as with many internal generators (Chawla and
Kirby, 2000) but instead requires a knowledge of free wave solutions,
which are simpler to derive and are known for awide range of equations.
These freewave solutionsmay be linear or nonlinear, regular or irregular,
andmaybe reproduced to arbitrary levels of accuracy. At the same time as
the system generates waves, it absorbs outgoing signals in the same way
as a typical sponge layer. Analytical and numerical tests show excellent
performance for a range of conditions including irregular, nonlinear,
wave generation.

2. Generating–absorbing sponge layers

The concept of sponge layers was introduced by Israeli and Orszag
(1981), and is widely used to remove unwanted signals at the edge of
domains, and prevents them from re-reflecting off open boundaries.
For the present paper, it may be extended and written as

A1½ � a;t
h i

þ L1½ � a;t
h i

þ otherterms ¼ ω1 A1½ � aimp−a
h i

þω2 L1½ � aimp−a
h i

ð2:1Þ

where [a](x,y,t) is the vector of variables (which would be (η,U,V)T for
many Boussinesq-type systems where η is the surface elevation and
(U,V) are the velocity variables, a,(−) ≡ ∂a/∂(−), ω1(x,y) and ω2(x,y)
are non-negative real damping coefficients. Thematrix [A1] contains al-
gebraic multipliers of [a,t] (e.g., 1 or h) while the matrix [L1] contains
spatial differential operators of [a,t] (e.g., h2∂2/∂x2). In other words, ω1

may be thought of as modifying pure time derivative terms in the sys-
tem,whileω2modifiesmixed space–time terms. Together, they contain
all time derivative terms that may be operated on by damping. Separate
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damping coefficients are used as it will be shown that there are
advantages and disadvantages to using both forcings, depending on
the situation.

The heart of the system is the vector of imposed quantities, [aimp](x,
y,z,t). For typical water wave implementations (Wei and Kirby, 1999)
velocities would be damped towards zero, with perhaps elevation
damping to a desired tide level, leading to a system which damps to-
wards quiescence. However, damping to zero is not always necessary
or even helpful. Here we specify that imposed quantities [aimp](x,y,t)
must be homogeneous solutions to the undamped system, i.e.,
Eq. (2.1) with ω1 = ω2 = 0. These imposed quantities are the desired
waves to be generated, and may be linear or nonlinear, steady or
unsteady.

By inspection, we see that if [a] = [aimp], the right hand side of
Eq. (2.1) is zero and the desired free wave propagates identically to
the undamped equations. However, if [a] ≠ [aimp], the right hand side
terms in Eq. (2.1) will gradually force the solution towards [aimp] in
the same way that a standard sponge layer forces velocities and/or
elevations to zero. In this way, the system can generate the imposed
waves at the same time as it damps other disturbances like reflected
waves. Generation and absorbing zones are placed along the
boundaries, and are the only locations where ω1 and ω2 are nonzero.
If [aimp] = 0, the system becomes a normal sponge layer.

The utility of this combined generation/damping layer is easy to see.
By not requiring two separate generation/absorbing layers as with Wei
and Kirby (1999) or Chawla and Kirby (2000), space is saved.
Undamped free waves are relatively easy to derive compared to the
Green's functions in internal wavemakers, or may even be taken from
other model outputs. Nonlinear waves, which are a significant issue
for internal wave generators using Green's functions, are easy to gener-
ate with this new method as long as free wave solutions are known for
the system variables. There are only two significant issues to be dealt
with: (1) making certain that the generating/absorbing layer is
long enough and strong enough to generate and dissipate waves, and
(2) making sure that there is no significant re-reflection from free
waves entering the sponge layer from the domain. Similar systems
have been used with good results in compressible flow computational
fluid dynamics to generate and absorb acoustic waves (Bodony, 2006),
which are equivalent in many ways to shallow water equations.

Analytic proofs of the system are difficult nonlinearly, but systems
are relatively straightforward to analyze for the case of a linear flat
bed. However, although nonlinear analytics are difficult, demonstra-
tions of nonlinear accuracy are not, as will be shown. Here, we perform
analysis in one horizontal dimension for Boussinesq and shallow water
systems although extension to two horizontal dimensions is straightfor-
ward. For a linear flat bed with one horizontal dimension, numerous
sets of Boussinesq equations and shallow water equations may be
represented as (e.g., following Wei and Kirby, 1999), after including
the generating/absorbing terms,

η;t þ hU;x þ α1h
3U;xxx ¼ ω1 ηimp−η

� �
U;t þ gη;x þ αh2U;xxt ¼ ω1 Uimp−U

� �
þω2αh

2 Uimp;xxt−U;xxt

� � ð2:2Þ

where g is gravitational acceleration and h is the water depth. To obtain
nonlinear shallow water equations, set α1 = α = 0; for Nwogu's
(1993) equations, α1 = α + 1/3; to obtain Peregrine's (1967) depth-
averaged equations, α1 = 0, α = −1/3.

The undamped (ω1 = ω2 = 0) solution to these equations for free
waves traveling in the positive and negative x-directions is

η F ¼ η0 exp i kx−σtð Þ½ � þ η1 exp i −kx−σtð Þ½ � þ c:c:

U F ¼ u0 exp i kx−σtð Þ½ �−u1 exp i −kx−σtð Þ½ � þ c:c:
ð2:3Þ
where the radial frequency, σ, is given by

σ2 ¼ gk2
1−α1 khð Þ2
1−α khð Þ2 ð2:4Þ

and k is the cross-shore wavenumber for a free wave. The relationship
between velocities and surface elevations is

u0 ¼ η0
gk

σ 1−α khð Þ2� � : ð2:5Þ

Note again that these are also solutions to the damped equations if we
take ηimp = ηF, and Uimp = UF. Thus, the undamped result is a particular
solution to the damped equation. To find the full solution to the damped
equation, wemerely need to find the homogeneous dissipative solution
(with ηimp = 0, Uimp = 0) and apply boundary conditions based on the
problem geometry. The homogeneous solution depends strongly on the
spatial variation of the sponge layers,

ω1 xð Þ ¼ eω1=L
� �

f xð Þ; ω2 xð Þ ¼ eω2=L
� �

f xð Þ ð2:6Þ

where L is the length of the sponge layer.
Standard sponge layers typically aremaximum at the computational

boundaries, and have a smooth variation to zero at their furthest extent
in the domain. Here, we assume a polynomial variation,

f xð Þ ¼ nþ 1ð Þ x
L

� �n
;0 ≤ x ≤ L;

0; x b 0
ð2:7Þ

so that the integrated strength of the sponge layers∫L

0
ωidx ¼ eωi; i ¼ 1;2.

Analytical behavior of the generating–absorbing sponge layer is
most easily demonstrated using the shallow water equations, as these
have straightforward solutions. Details will differ once dispersive
terms are added but, as will be shown, the behavior is generally similar
although there are some significant differences; e.g.,ω2 has no effect on
shallowwater equations as there are nomixed space–time terms. In this
case, the general solution to this system in the region 0 ≤ x ≤ L is, for
ηimp and Uimp that satisfy the undamped equations,

η ¼ eηimpR exp −ikxþ iσtð Þ þ eηimpL exp ikxþ iσtð Þ

þ AL exp ikxþ iσtð Þ exp eω1 C0
x
L

� �nþ1
� �

þ AR exp −ikxþ iσtð Þ exp −
eω1 C0

x
L

� �nþ1
� �

þ c:c:

ð2:8Þ

U ¼ eηimpR

ffiffiffiffiffiffiffiffi
g=h

q
exp −ikxþ iσtð Þ−eηimpL

ffiffiffiffiffiffiffiffi
g=h

q
exp ikxþ iσtð Þ

−AL

ffiffiffiffiffiffiffiffi
g=h

q
exp ikxþ iσtð Þ exp eω1 C0

x
L

� �nþ1
� �

þ AR

ffiffiffiffiffiffiffiffi
g=h

q
exp −ikxþ iσtð Þ exp −

eω1 C0
x
L

� �nþ1
� �

þ c:c:

ð2:9Þ

where C0 ≡ (gho)1/2 is the long wave speed.
This systemhas three parts: (1) undamped left-and-rightwardmov-

ing imposed waves, (2) leftward-moving damped waves, and (3)
rightward-moving damped waves. The general system plus boundary
conditions will then give the performance of specific implementations.
In themost simple, with ηimp = Uimp = 0, a rightwardmoving damped
free wave that enters the sponge layer at x = 0 is reflected by a wall
boundary at x = L, and re-exits moving leftward at x = 0 will
be damped by a factor of exp −2eω1=C0

	 

. Thus, for a damping factor

of eω1=C0 ¼ 5 , the reflected wave will only be 4.5 × 10−5 times the
size of the incoming wave, which is negligible.
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To generate waves ηimpL and UimpL (moving right to left in the
negative x-direction), there are two likely boundary conditions:

1. U = UimpL is imposed at the boundary, x = L, and UimpL and ηimpL in
the domain according to Eqs. (2.3–2.5).

2. UimpL and ηimpL are imposed in the domain as before, with boundary
conditions of U = 0 at x = L.

The first is trivial: from inspection η = ηimpL and U = UimpL every-
where in the domain. If there are reflected waves entering the sponge
layer, they will be damped, at least linearly, as before and will not
interfere with the wave generation.

For the second boundary condition, imposing U = 0 on the bound-
ary (wall) interferes with the desired η = ηimpL and U = UimpL condi-
tions, and the wall condition can only be satisfied by simultaneously
generating a leftward-propagating decaying wave so that

η ¼ eηimpL exp ikxþ iσtð Þ exp
eω1 C0

x
L

� �nþ1
−1

� �� �� �
þ c:c:

U ¼ −eηimpL

ffiffiffiffiffiffiffiffi
g=h

q
exp ikxþ iσtð Þ exp

eω1 C0
x
L

� �nþ1
−1

� �� �� �
þ c:c:

ð2:10Þ

The generated wave at x = 0 will have a relative error in height of
exp −eω1=C0

	 

, which is exponentially double the error of the simple

decaying wave entering from x = 0 and reflecting off the wall at
x = L. For this reason boundary condition 1 is preferred if possible,
although the wall condition will also work well as will be shown.

These examples have been for linear shallow water equations,
where closed-form analytical solutions are readily available, but analy-
ses will be performed numerically in the next section for dispersive
Boussinesq systems. The most important difference here is that
Boussinesq systems will experience reflections from the boundary be-
tween damped and undamped zones, while shallow water equations
cannot, at least for one horizontal dimension. Because of this,
constant-strength sponge layers should not be used for dispersive
Boussinesq systems: however, with linear and quadratic polynomial
sponge layers can both work well. If the absorbing–generating sponge
layer is long enough and strong enough, the details cease to matter
and waves will be absorbed and generated accurately.

Of course, for any system it is necessary to know the dispersion rela-
tion and the relationship between surface elevations and velocities to
force eηimp and Uimp, but these relations may readily be determined for
most cases. Irregular waves may also be easily generated by the super-
position of various frequencies using standard methods. The damping
nature of the sponge layer further appears to almost eliminate the
high frequency noise generated by some methods, which is a welcome
side effect.

The secondmajor advantage of this type of generation system is that
it is relatively straightforward to generate nonlinear waves at the same
time as reflected waves are absorbed. If a nonlinear solution is known
for an undamped Boussinesq or other system, it may simply taken to
be the imposed solution and there are no further changes. The nonlinear
waveswill then be generated in the sameway as linearwaves. Thismay
be done for both regular waves, and for unsteady nonlinear waves if the
appropriate undamped solutions are known. It should be emphasized
that the nonlinear solutions must be for the specific system modeled
and using, for example, second order hyperbolic Stokes solutions for a
Boussinesq model will give worse results than a second order solution
of that Boussinesq system.

2.1. Relationship to relaxation zones

Although it may not be immediately obvious, the generating–
absorbing sponge layers presented here have links to relaxation zones
(Madsen et al., 2003). In these zones, systems are computed as normal,
but the computed solution is replaced with a blend of the undamped
and imposed solutions at the end of each time step. This may bewritten
as

a x; y; t þ Δtð Þ≡ cr x; yð Þau x; y; t þ Δtð Þ þ 1−cr x; yð Þð Þaimp x; y; t þ Δtð Þ
ð2:11Þ

where au(x, y, t + Δt) is the quantity that would arise at the end of each
time step from the undamped, unforced equations, aimp(x,y,t) is the vec-
tor of imposed quantities, and 0 ≤ cr(x,y) ≤ 1 is the spatially-varying
relaxation coefficient, with cr = 0 forcing the solution exactly to the
target, and cr = 1 leaving the solution unchanged. Using this method,
solutions are gradually forced to the desired quantities.

If we expand all quantities with Taylor series in time, so that a(t +
Δt) = a(t) + a,t(t)Δt + O(Δt2) and similarly for the undamped and
imposed systems au(x,y,t) and aimp(x,y,t), the relaxation zone equations
may be written as (remembering that a(t) = au(t) at the beginning of
each time step)

a;t ¼ crau;t þ 1−crð Þaimp;t þ 1−crð Þ
aimp−a
� �

Δt
ð2:12Þ

and compared to the present generating–absorbing sponge layers
which, in the same format, may be written as, if ω2 = 0,

a;t ¼ au;t þω1 aimp−a
� �

: ð2:13Þ

Thus, there are two differences between the two systems. The first is
that performance in the relaxation zone has a dependence on time step,
Δt, which makes the system more damped/forced for short time steps,
and less damped for large time steps. In contrast, the present system
is invariant with respect to time step. The second difference is that the
relaxation zone directly imposes a component of aimp,twhile the present
system does not. Of the two, the relaxation zone dependence on time
step is the most significant and the system presented here will have
more predictable properties. However, a choice of relaxation coefficient,
cr that varies with time step can make the system equivalent to the
present ω1 damping: if we define 1 − cr = ω1Δt, then Eq. (2.12)
becomes

a;t ¼ 1−ω1Δtð Þau;t þ ω1Δtð Þaimp;t þω1 aimp−a
� �

ð2:14Þ

which is in the limit of small Δt equivalent to the present ω1 damping
(Eq. (2.13)).

3. Frequency-domain linear wave generation and damping
coefficients for Boussinesq-type equations

Although reflection and generation coefficients may be found ana-
lytically for the linear shallow water equations, general analytical solu-
tions do not appear simple for the wide variety of systems that may be
encountered. Here, we present numerical frequency-domain genera-
tion and damping coefficients for the Boussinesq-type systems of
Eq. (2.2). These have higher derivatives than shallow water equations,
which produce somewhat different performance although general
trends are similar. Linear reflection coefficients were generated using
standard methods by assuming periodic waves over a flat bed, and
then solving the resulting coupled ordinary differential equations
using centered finite differences with a wall boundary condition at the
end of the sponge layer, x = L, and by assuming free waves satisfying
Eqs. (2.3–2.5) at the interior boundary, which was five water depths
past the sponge layer. Imposed waves were homogeneous solutions to
the appropriate sets of equations, and all numerical solutions were
tested for convergence.
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Sponge layers were assumed to have forms according to Eqs. (2.6–
2.7) with varying lengths, L, polynomial coefficients, n, and integrated
strengths, eω1 and eω2. The analysis of Section 2 with the shallow water
equations suggests that wave generation is more of a challenge for a
wall boundary condition, so this will be the focus of our analysis.
3.1. Generation coefficients

Fig. 1 shows wave generation coefficients for Nwogu's equations
with Padé [2, 2] dispersion, with sponge lengths of L = (2.5,5,10,20)h,
and integrated sponge strengths of eω1= ghð Þ1=2 ¼ 2:5;5;10ð Þ . For this
first test we set eω2= ghð Þ1=2 ¼ 0, and the polynomial in Eq. (2.7) has
the quadratic variation n = 2. Several separate progressions towards
more accurate generation may be seen. First, as integrated sponge
strength increases from eω1= ghð Þ1=2 ¼ 2:5 to 10, the generation coeffi-
cient becomes much closer to 1 as expected from the analytical shallow
water equation solutions. A strength of eω1= ghð Þ1=2 ¼ 10 appears to give
accurate generation for all but the shortest sponge length, L = 2.5h and
even here themaximum error is less than 1% over the range kh = [0,4].
Generation accuracy increases with increasing sponge length up to
L = 10h, but is essentially constant for longer sponges. One unexpected
but highly welcome observation is that, except for the shortest sponge
layer of L = 2.5h, dispersive waves are generated more accurately
than shallow water waves. This means that the shallow water genera-
tion results of the previous section may be used conservatively to
guide wave generation in other systems. Note also that the low wave-
number Boussinesq results match well the shallow water solutions for
L = 20h and L = 10h, but less well for other sponge layer lengths.
This is because both the wavelength and sponge layer length scales
are important: both need to be near the shallow water range to be suit-
able predictors for Boussinesq results.

The results of Fig. 1 are quite good, but used a damping coefficient eω1

that only affects pure time derivative terms. Including mixed space–
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Fig. 1.Wave generation coefficients for eω1= ghð Þ1=2 ¼ 2:5 −ð Þ;5 −−ð Þ;10 − �−ð ÞÞ, using Nwo
time derivative damping, eω2, may add significant complexity to coding
but could potentially also increase generation accuracy enough tomake
it worthwhile. Fig. 2 shows generation coefficients using eω1 ¼ eω2 for
otherwise the same conditions as in Fig. 1. Unfortunately, the hoped-
for increase in accuracy does notmaterialize. Results for lowwavenum-
ber and short sponge lengths in particular are considerably worse than
the eω2 ¼ 0 case, and it does not appear that eω2 offers advantages for
wave generation.

Comparison of linear and quadratic (n = 1, 2) sponge layer polyno-
mials in Fig. 3 shows little difference in performance between the two
sponge layer shapes except for very short sponge layers that would
not be recommended in any case. Thus, the detailed shape of the sponge
layer has little influence on linearwave generation properties. However,
we do note without showing results that a constant sponge layer
(n = 0) should not be used.

Fig. 4 compares generation coefficients for Peregrine's and Nwogu's
equations. Again, details differ but trends are identical, and both sets of
equations give excellent results for strong and long sponge layers. One
interesting detail is that Peregrine's equations appear to generate
short waves more accurately than Nwogu's equations, for reasons that
are unclear.
3.2. Reflection coefficients

Fig. 5 shows reflection coefficients forNwogu's equations for sponge layers
of different lengths and strengths, both using eω2 ¼ 0 and eω2 ¼ eω1 . These
results are surprising inmanyways. For eω2 ¼ 0, all sponge layer strengthseω1 show major differences from the analytical shallow water equation
values, particularly for short sponge layers with L ≤ 5h. Here, strong
sponge layers have more reflection than weaker sponge layers, and all
sponge strengths show significant reflection. This general result has
been known to practicing modelers, who have learned to not use short
sponge layer lengths, but has never previously been quantified. In
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gu's equations, n = 2, eω2 ¼ 0. Shallow water equation results are shown as dotted lines.
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Fig. 2. Comparison of wave generation coefficients for eω1= ghð Þ1=2 ¼ eω2= ghð Þ1=2 (– –); eω2= ghð Þ1=2 ¼ 0 −ð Þ. Other parameters are identical to Fig. 1.
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contrast, including eω2 ¼ eω1 in computations tends to decrease signifi-
cantly the reflection coefficients, particularly for strong sponge layers.
With sponge lengths of L = 10h and eω2 ¼ 0, reflection coefficients of
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Fig. 3. Comparison of wave generation coefficients for polynomial coefficie
R ≤ 0.01 are possible for allwavenumbers using just eω1; however includ-
ing eω2 ¼ eω1 allows reflection coefficientsmore than 10 times smaller for
the same conditions.
0 1 2 3 4
0.9

0.95

1

1.05

kh

H
/H

im
p

L=5h

0 1 2 3 4
0.9

0.95

1

1.05

kh

H
/H

im
p

L=20h

nts n = 1 (−−), n = 2 (−). Other parameters are identical to Fig. 1.
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Fig. 4. Comparison of wave generation coefficients for Peregrine's equations (−−), Nwogu's equations (−). Other parameters are identical to Fig. 1.
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Taken together, results show that waves may be generated and
absorbed accurately for different systems if two conditions are satisfied:
(1) the sponge layer is long enough; and (2) the integrated strength of
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Fig. 5. Reflection coefficients for eω1= ghð Þ1=2 ¼ 2:5 −ð Þ; 5 −−ð Þ; 10 −�ð Þ, using Nwogu's equatio
dotted lines.
the sponge layer is large enough. Equation details and sponge layer
profiles are verymuch secondary once these criteria have been satisfied.
Good results will be given for a variety of systems by a length L = 10h,
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and eω1= ghð Þ1=2 ¼ 5, whichwill give less than 1% error in both reflection
and generation. Higher order derivative terms included in eω2 may be
neglected without negative effects for wave generation, but these
termswill act to reduce reflections significantlywhen they are included.

4. Time domain numerical simulations

Frequency domain solutions for wave generation showed good
properties, but still require validation in the time domain numerical
models used for computing nonlinear, phase-resolving wave transfor-
mation. One important result from the previous section was that gener-
ation coefficients based on shallow water equation results appear
conservative for all dispersive models tested if the layer is at least
L = 5h long. In contrast, longer lengths of at least L = 10h are required
to give low reflection if only ω1 is used, but adding ω1 = ω2 decreases
reflections considerably.

With this in mind, and to demonstrate that the concept may be
applied to almost any system, we apply generating–absorbing sponge
layers to the O(μ2) rotational Green–Naghdi–Boussinesq model of
Zhang et al. (2013). The Green–Naghdi–Boussinesq systems of Zhang
et al. (2013) are related to the Boussinesq systems of Nwogu (1993)
and Wei et al. (1995), but with no assumption of irrotationality. They
retain the ability to manipulate properties through asymptotic rear-
rangements for dispersion and shoaling and obtain Padé approximants
for appropriate dispersion levels. The inviscid O(μ2) equations (no eddy
viscosity or bottom stress), and including ω1 but not ω2 terms, may be
written in the general form of

η;t þ∇ �
XN
n¼0

μβnun ηþ hð Þgnjq¼1

 !
¼ ω1 ηimp−η

� �
ð4:1Þ

ηþ hð Þ
XN
n¼0

ϕmnun;t þ otherterms

¼ ηþ hð Þ
XN
n¼0

ω1 un−imp−un

� �
ϕmn; m ¼ 0;1;2…N ð4:2Þ

where N = 2 for O(μ2) equations, and full details and coefficients are
given in Zhang et al. (2013).

The computational domain shown in Fig. 6 consists of 3 parts:
wavemaker region (L1 = 5 m), propagating part (L2 = 32 m) and
absorbing sponge layer (L3 = 10 m). Both linearly-varying and
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−1

−0.5

0

z(
m

)

x(m)

L
1

Source

L
2

sample area

L
3

Sponge Layer

0 5 10 15 20 25 30 35 40 45
−1

0

1
t=75s 

η/
a 0

x(m)

Fig. 6. The domain computational and linear wave generation.
quadratically-varying ω1 were used as defined in Eqs. (2.6–2.7), as
given by

ηimp;un−imp ¼
(
ηimp;un−imp 0 ≤ x ≤ L1

0 x N L1
;

ω1 xð Þ ¼

eω1

L1
nþ 1ð Þ 1− x

L1

� �n

0 ≤ x ≤ L1

0 L1 b x b L2eω1

L3
nþ 1ð Þ x−L1−L2

L3

� �n

x ≥ L3

8>>>>><>>>>>:

ð4:3Þ

where eω1= ghð Þ1=2 ¼ 10 for all cases. For both generation and absorption
sponge layers, eω2= ghð Þ1=2 ¼ 0. Wall boundary conditions were used for
all tests. Fig. 6 shows a first test of generation using a very small mono-
chromatic wave, with H = 0.0001 m, h = 1 m, and T = 1.91 s
(kh = 1.29), demonstrating generation, propagation, and absorption.

4.1. Accuracy of regular wave generation

The accuracy of regular wave generation is themost basic test of the
new system. Imposed quantities were obtained from Stokes-type ex-
pansions of the equations of Zhang et al. (2013), where either the linear
or second order imposed solutions were used over a range of wave
heights. Coefficients and forms for these velocities and surface eleva-
tions follow Zhang et al. (2013), which may be consulted for more
details. Note again that surface elevations and velocities are not the
same as found by a standard Stokes expansion (e.g., Dean and
Dalrymple, 1991) — imposed surface elevations and velocities must be
solutions to the approximate Boussinesq system, which differ some-
what from the arbitrary depth hyperbolic solutions.

Wave heights were recorded as the crest to trough elevation (aver-
aged over 5 wave periods) at each point along the 20 m sample area
shown in Fig. 6. These heights varied in space because of unwanted re-
flections, and nonlinearly-generated spurious harmonics. Fig. 7 shows
maximum and minimum wave heights measured over this sample
region for waves with varying height/depth ratios. The maximum and
minimum of these wave heights over the sample area and their differ-
ences from target values provide quantitative measures of the com-
bined generation–reflection error. In addition to the spatially-varying
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Fig. 7.Maximumandminimumwaveheights recordedover the 20 m sample area of Fig. 6
using linear and second order generation and absorption. (a) Linearly varying sponge
layers; (b) quadratically varying sponge layers. (−−⁎−−) Maximum and minimum
heights for first order generation; (−o−) second order generation; and (−+−) second
order generation using relaxation zones (obscured).
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error, there could also be linear and nonlinear errors in average wave
height.

The situation is simplest for the smallest wave heights where linear
considerations dominate. Here, combined generation and reflection
errors are of O(0.1%) using linear and nonlinear imposed values, and for
linear and quadratic sponge layer spatial variations. These results corre-
spond well to frequency domain solutions shown in Figs. 3 and 5,
which predict very accurate generation for kh = 1.29 using eω1= ghð Þ1=2 ¼
10 , and L = 5h, and minimal reflections using eω1= ghð Þ1=2 ¼ 10 , and
L = 10h. This good correspondence in accuracy occurs even though
frequency domain results used Nwogu's equations while the time do-
main results use the equations of Zhang et al. (2013). When combined
with Fig. 4 showing the similar accuracy of generation for Peregrine's
equations, results suggest that the broad zones of high and low accuracy
generation and reflection have only aweak dependence on the particular
Boussinesq-type equations used, and that Figs. 1–4 may be used as a
guide for many types of Boussinesq equations.

Errors increase with increasingwave height for both linear and qua-
dratic sponge layers, and for linear and second order imposed waves.
This implies that the larger wave height errors arise from errors in the
generation of nonlinear harmonics. For the linearly-varying sponge
layers (n = 1), Fig. 7(a) shows envelope errors at Himp/h = 0.4 span-
ning [−4, +6]% using first order generation, and [+1, +2]% using sec-
ond order generation. Thus, the second order generation shows a large
improvement in accuracy, with remaining errors arising from neglected
third and higher harmonics: stream function wave theory (Fenton,
1988) gives a third harmonic for H/h = 0.4 and kh = 1.29withmagni-
tude 6.5% of the first harmonic, so neglect of third and higher harmonics
is substantial here. Further increases in accuracy for nonlinear genera-
tion are almost certain if more harmonics are included. Using the
quadratically-varying sponge layers (n = 2) in Fig. 7(b) gives lower
errors for both the linear and second order imposed wave properties,
but differences are relatively small.

Fig. 8 shows surface elevation time series comparisons at x = 10 m
between linear generation, nonlinear generation, and the target second
order solution for a significantly nonlinear wave with H/h = 0.4. The
nonlinear solution clearly shows amuch better profile, with the expect-
ed sharper crest and flatter trough. While linear generation does a
reasonable job with the overall wave height at this location, its profile
is not good and the spuriously generated free harmonics will cause
wave heights to vary over space. This is exactly the situation where
the new generation method works well, and demonstrates its utility.

Finally, Fig. 7 gives a comparison between sponge layers using second
order generationwith linearly varying sponge layers, and theMadsen re-
laxationmethod using 1 − cr = ω1Δt as suggested in Section 1 andwith
the same imposedwaves. Results are close to identical, demonstrating the
correspondence between the twomethods once coefficients are adjusted
20 21 22 23 24 25

−0.5

0

0.5

1

t

η/
a 0

Fig. 8. Elevation time series at x = 10 m with H/h = 0.4, kh = 1.29 and linear sponge
layer. (−) Second order target wave; (−−) generated wave using linear imposed signal;
and (⋯) generated wave using second order nonlinear imposed signal.
appropriately. The only significant difference is that the original relaxation
method will have a dependence on time step if used with a constant cr,
while the sponge layers presented here have properties that are indepen-
dent of time step.

4.2. Random wave generation

All waves in nature are random, and the present method can
simulate random waves when given properly imposed elevations and
velocities. For small amplitude waves, these are simply linear superpo-
sitions of regular waves and will have similar properties,

ηimp ¼
X
i

ηi cos kix−σ it þ �ið Þ ð4:4Þ

un−imp ¼
X
i

XN
n¼1

un;i cos kix−σ it þ �ið Þ ð4:5Þ

where the continuous spectrum is here discretized into a large number
of frequencies with specified amplitude and random phase shift for
numerical purposes.

Random wave capability was tested using a JONSWAP target spec-
trum for very small waves with heights HRMS/h ≈ 0.01, peak period
Tp = 2.5 s, and over the same topography as in Fig. 6. These are small
enough that nonlinear terms are negligible and the test is effectively lin-
ear. Fig. 9 shows the comparison between computed and target spectra:
computed results agree almost exactlywith the target over awide range
of frequencies. Time series comparisons in Fig. 10 also show excellent
correspondence. This gives good confidence moving forward for appli-
cation in other areas.
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Fig. 10. Computed (–) and target (– –) time series of small irregular waves at x=10 m.
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The generation test with small amplitudewaves is useful, but it may
be desired in some instances to generate significantly nonlinear irregu-
lar waves. The generating–absorbing sponge layer can do this provided
that accurate target time series are known, which is not at all simple. A
full second order Stokes analysis of a system including super-and-
subharmonics can provide this in many circumstances, but these analy-
ses are known to break down in shallow water where they are most
needed, and general characteristics of fully nonlinear irregularwave tar-
get time series are still not known a priori for most instances. However,
there are still circumstances where this might be accomplished.

Here, we demonstrate an application of the absorbing–generating
sponge layer for taking nonlinear irregular waves generated in one
domain, and reproducing them in another asmight be done using nested
grids. Fig. 11 shows the computational setup. In the large domain,
0 m ≤ x ≤ 47 m, irregular waves are generated over the range
0 m ≤ x ≤ 5 m, and subsequently propagate up to a shoal that is 2/5
of the original depth, where waves become highly nonlinear. A nested
domain on top of the shoal, 17 m ≤ x ≤ 47 m, is then simulated by
using recorded values for the large domain between 17 m ≤ x ≤ 27 m
as imposed values for the nested domain. The accuracy of this nonlinear,
irregular wave generation is shown in Fig. 12 by comparing first genera-
tion (large domain) and second generation (nested domain) values at
x = 35 m. The two generations are virtually identical, demonstrating
that the absorbing–generating sponge layer can accurately reproduce
highly nonlinear irregular waves when given a proper signal. However,
as noted earlier, the specification of a proper nonlinear wave signal
remains an open question in many cases.

5. Conclusions

The generating–absorbing sponge layers developed here give good
results for several phase-resolvingwave systems tested andwould likely
work well for numerous other systems. They are relatively straightfor-
ward to implement, requiring only a knowledge of free waves which
are well known for many systems, and can accurately reproduce nonlin-
ear free waves if given appropriate signals at least up to H/h = 0.4.

Wave generation can be accomplished well using just the ω1 source
zones (operating on pure time derivative terms), but damping appears
to be more efficient when using both ω1 and ω2 (mixed space–time)
terms. Wave generation for dispersive systems appears to be in general
more efficient than is predicted by shallowwater equations,while reflec-
tion coefficients for dispersive systems tend to be much higher than
predicted by shallow water equations. Good results may be found for
all systems tested using lengths of L = 10h, and integrated strengths ofeω1= ghð Þ1=2 ¼ 5−10. With appropriate choice of coefficients, the sponge
layer systems shown here have a strong correspondence to relaxation
zones for wave generation, and similar performance.

All analyses and simulations here have been performed for one
horizontal dimension, but techniques and conclusions should carry
over to two dimensions with minimal modification.
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