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Abstract

We present a comprehensive assessment of nodal and hyldta/namlal discontinuous Galerkin (DG) finite element
solutions on a range of unstructured meshes to nonlinedloshaater flow with smooth solutions. The nodal DG
methods on triangles and a tensor-product nodal basis afritatarals are considered. The hybrid mgdatial DG
methods utilize two dferent synergistic polynomial bases on polygons in regigie DG discretization; orthogonal
basis functions constructed by the Gram-Schmidt processsad as trial and test functions in a DG weak formulation;
and a nodal basis is used as #liceent means for area integration. These are implementetbmytilar, quadrilateral,
and polygonal elements. In addition, we discuss aspect® toohsidered in order to achieve the so-called well-
balanced property that preserves steady state at rest sgtitially varying bed. The performance in terms of accuracy
and computational cost is demonstrated ukingdp convergence studies on a nonlinear problem with a manutadtu
solution and the nonlinear Stommel problem with flat and fianbeds. To assess the performance of quadrilateral
and polygonal elements in comparison to triangular elemevd consider a setting in which a quadrilateral mesh, a
mixed triangular-quadrilateral mesh, and polygonal mestdarived from a given triangular mesh arice versaThe
tests conducted reveal the merit of using the quadrilagdeahents in terms of computational cost per accuracy and
computing time. More importantly, the numerical resulisacly show that high order schemes significantly improve
the cost performance for a given level of accuracy, with cabibi-cubic interpolants particularly achieving dramati
improvements in accuracy-as compared to linear and queadngipolants, with diminishing benefit @as> 3.

Keywords: Discontinuous Galerkin finite elements, Nodal, Modal, figalar element, Quadrilateral element,
Polygonal element; Computational cost, Well-balancedjl8Ww water equations

1. Introduction

The shallow water equations (SWE) are used extensively idetimy many important physical phenomena, such
as hurricane induced flooding, tides, riverine flows, tsungaves, dam breaks, and many others. The equations can
be coupled with a range of transport equations to model prosisuch as salinity, heat, and contaminant movement.
Simulations of such environmental flow problems frequemiplve large, geometrically complicated domains and
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integration over long periods of times. An accurate affidient solution of the SWE is therefore crucial in numerical
simulations. While relatively young in comparison with re@onventional approaches, discontinuous Galerkin (DG)
finite element methods (see [1, 2] for reviews of DG methods)ehincreasingly become a powerful alternative
for solving the SWE [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Concepyusimilar to finite volume methods, DG methods
inherently have the property of being conservative on tieeneht level, making them ideal for coupling flow and
transport models. Additional notable advantages of DG puslinclude the ease of constructing high order schemes
on unstructured meshes and high scalability for parallplémentation when used in conjunction with explicit time
integration schemes. Since DG methods use a discontinggarsxamation, they are able to accommaodate non-
conforming meshes and the use offelient bases in each element, thus rendering them naturallysuited for a
discretization with adaptivie (mesh) and (polynomial order) refinements.

While DG methods possess a number of favorable propertiespajor drawback in comparison to continuous
Galerkin (CG) methods on a given mesh is the larger numbeegfess of freedom, which. consequently translates
into greater computational costs. The preliminary congearistudy in [13] of CG and DG methods for the SWE
shows that, when using linear interpolation on identicashes, the cost per time step of the DG approach on serial
machines is approximately four to five times more expens$iga the CG approach. The subsequent study in [6] finds
that the DG approach is generally mofgaent in terms of achieving a specified error level for a gigemputational
cost and in terms of scalability on large-scale parallelmrazs. Note that 23] and [6] use triangular meshes in their
studies.

A main objective of this work is to examine the numerical periance of high-order DG schemes in comparison
to linear-element DG schemes for the nonlinear SWE. Her@ladrder method refers to a scheme that is formally
higher than second order. We adopt this definition sincelyideed SWE solvers for environmental flow applications
are mostly first or second order accurate. Note that, in a D@es6, such a scheme is devised by using a local
expansion polynomial of degree greater than unmigy, p > 1. In particular, we examine the numerical performance
of two DG schemes: a nodal DG scheme [14] and hybrid mioddhl DG scheme [15]. These two schemes use
different variants of polynomial bases (hence their namesakbgiapproximation. The nodal DG scheme is based
on a Lagrange polynomial basis. The Lagrange polynomiasthasctions possess an interpolation propesgy, their
value is unity at their associated nodes and vanishes at otlites. The nodal DG scheme takes advantage of this
property in constructing anfiécient quadrature free approach for evaluating integrat$esppearing in the DG weak
formulation. The hybrid modatodal scheme, devised by [15] is based on a pair of the seecptilymorphic nodal
bases on a polygon which consists of an orthogonal modas basiiits nodal basis counterpart. The former is utilized
in realizing the DG discretization and the latter is emptbyeevaluating integral terms. We assess the performance
of these DG schemes,.in terms of accuracy, computational tmd computational cost per accuracy, through their
application to test problems. Note that, in this work, weitliour test problems to those with ficiently smooth
solutions on alarge simple domain. Generally, problemis gritooth solutions permit high-order schemes to perform
at their best. Although they do present fewer numericallehgks, smooth-solution problems are in fact frequently
encountered’in a large class of environmental flow appboatthat includes tides, hurricanes, non-breaking waves,
and many others.

This work is also motivated in part by an observation that adyilateral element may be obtained by merging
two adjacent triangular elements avide versatwo triangular elements formed by bisecting a quadriidtelement.

In this mesh setting, a mesh of quadrilateral elements wooitsist of approximately half as many elements as a
mesh of triangular elements. The number of edges in the datedal mesh would be approximately two-thirds that

of the triangular mesh. Since evaluating area integralsealg@ integrals represents the major computational cost in
DG methods, the use of quadrilateral elements would appdas &n appealing means to improve the computational
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efficiency of DG schemes. To gain more insight into this idea, waene the performance of DG solutions with
expansion basis functions defined for various element shapore specifically, for the nodal DG methods, we
consider the Lagrange nodal bases on triangles and tensdugi nodal bases on quadrilaterals. For the hybrid
modafnodal DG methods, we consider not only the DG solutions ofipokphic bases on triangular and quadrilateral
elements but also polygonal elements.

One issue that arises in DG schemes and other methods baslee SWE in conservative form concerns their
ability to preserve steady state at rest in a problem withadialfy varying bed, the well-balanced property [16, 17].
A straightforward treatment of the bed term may not balan@tty (at the computational level) the gradient flux
term and the bed term and thus may lead to a failure in maintathe steady state at rest. It is demonstrated in [17]
that the well-balanced property generally yields a morauigte solver. In a DG framework, several well-balanced
schemes have been devised, sgp[18, 19, 20, 21, 11, 9] and references therein. In this wokkgigcuss treatment
and realization aspects to be considered in order to achiewedl-balanced property in high-order DG scheme based
on nodal bases.

This paper is organized as follows. In Section 2, we providestription of the two-dimensional nonlinear SWE.
Section 3 summarizes a general framework of the DG methodogregbin this work. Subsequently, we describe two
different bases to use with the DG method, namely, the so-catlgdhprphic nodal bases and the nodal bases. In
Section 4, we present a performance assessment of the mgbdd/nodal DG schemes and the nodal DG scheme
through two test problems: a nonlinear problem with a smoegmufactured solution and the nonlinear Stommel
problem. Since the manufactured-solution problem has actesolution, it permits an accurate measure of the
error. We therefore use this problem in a comprehensivepaegnce study (Section 4.2). In Section 4.3, we report
numerical results of the nodal DG solution to the nonlingan®nel problem with a flat bed as well as a non-flat bed.
The non-flat bed test case is also employed in the study of #iiebalanced property. Although it has a relatively
simple structure, the nonlinear Stommel problem contdintkaterms present in realistic applications, includihg t
Coriolis force, surface wind stress, and bottom frictioen€lusions from the study are drawn in Section 5.

2. Governing equations: Shallow Water Equations

We consider the two-dimensional nonlinear SWE which camdithe depth-averaged continuity, andy- mo-
mentum equations written in conservative form as follows,

9q

4 V-F(@) = sa.x.D ®
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where the vector of the conserved varialgethe shallow water flu = (f(q), g(q)), and the vector of forcing terms
sare

H uH VH
q= uH’f=u2H+:—2LgH2’ g= uvH |
vH uvH v2H+%gH2
(2)
0
g, x, 1) = gH(Z—Z;+FX ,
gH%—Z;+Fy

respectively. Herebi(x, t) denotes the total water column heighhndv represent the depth-averaged velocity in the
x- andy-directions respectively is the magnitude of the gravitational acceleratmy(x) represents the bathymetric
depth measured positive downwards from a horizontal reterésee Figure 1}, andF, denote forcing terms in the

2xy) T

Heg+2, z,(xY) |

\_4__/——\

Figure 1: Schematic diagram of the free surface and bathrymet

momentum equations which may be presagt Coriolis force, bottom frictional stresses, surfacesses. Note that,
in this study, we consider thefect of momentum diusion from turbulence negligible and the terms describirahs
an dfect are excluded from the equations.

3. Methodology

3.1. Discontinuous Galerkin methods for hyperbolic bakalawvs

We first describe a framework of the specific DG formulatiorptayed in this study. For simplicity of presenta-
tion, we describe a DG discretization of 2-dimensionalachyperbolic balance laws of the form

ou(x, 1)

5 + V- fux,t) = suxt),x,1), (x1)eQx[0,), QeR2 3)

whereu(x,t) is a conserved variabld, = (fy, fy) is a nonlinear flux withf, and fy, denoting a flux function in the

x- andy-direction, respectively, andg(x, t) is a (non-stif) source term. A DG discretization of the SWE (1) is a
straightforward extension of the procedure for discretizi3). However, we note that the bed-slope term requires
additional attention in order to obtain a scheme that puesestill water (see Section 4.3.2.1 for discussion on this
issue). To discretize (3) using DG methods, the dontris subdivided into a set of finite non-overlapping elements.

4
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Let 7 denote such a set of elements. The solutiaa then replaced by a discontinuous approximate solutjpn
which, in each elemerk € 74, belongs to a finite dimensional spa¢€). The approximate solution on the element
K is determined by requiring that,

f %vdx f f(un) - Vvdx + f f-nvds= f S(Un, X, t)vdx, (4)

oK

for all v € V(K), wheren represents the outward-pointing unit normal vector. Theated numerical fluxf, also
known as the Riemann solver, resolves the fify,) being multiply-defined on the element boundary arisingrfro
the approximation being discontinuous across the elemésrface. The numerical flux, which depends on the traces
from both sides of the element interface, is essential ferstability, convergence, andhieiency of the DG method
(see examples of fierent numerical fluxes ia.g[22, 23]). Note that the coupling between the approximaketicmn
in K and in its immediate neighbors enters the weak formula () thmough the edge integral term.

Suppose here that a finite dimensional spege) (with desirable properties) is chosen for each elenh@ahd

.....

solut|on, when restricted tig, is then defmed by

Np
Uy = D TEOFM. xe K. (5)

m=1

wheret (t) represents the time-dependent expansion coordinatesgiGbal approximate solution corresponds sim-
ply to a direct sum of (5) over all elements. By adopting thasib, the local statement (4) for the elemiénteduces
to the following system of ordinary fierential equations (ODES):

dt f fx(uh)a¢mdx f fy(uh)a¢mdx

+ffh~n551rf1ds=fs(uh,x,t)$}fqu, m=1,...,Np, (6)

K

whereMmn, an entry of the element mass matrix, is defined by
M= [ B985 000 ™
K

Note that the superscriptis used to indicate arfidiation of the basis functions and their expansion cooridisavith
the elemenK. Hereafter, this superscript is dropped for notationajicity.
The area and edge integrals are conventionally evaluatediby a quadrature rule; for example, the area integral

involving fx(uy) is realized through
0
Z We r (fx(uh) ¢m)

where (v, Xc;i) IS a quadrature weight and point location pair adzds the number of quadrature points. We note

that the accuracy of the quadrature to be used dependsjargtie form of the integrands. In this work, we consider

a technique frequently used in spectral methods and in i@@ahethods [24, 14, 25, 15] to evaluate these integrals.
This technique relies on the so-called nodal basis, anditagis spanniny(K), to construct a simple butféecient

5
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means in treating the nonlinear terms. Here{¢gt € V(K)}m=1...m, With My > N, be a nodal basis associated
namely,

1 for m=n

¢m(xn) =0mn = . (8)

0 for m#n
Here, we allow the number of nodal basis functidiisto be greater than the number of trial basis functibigsIn
the case wher#, > Np, the property (8) of the nodal basis functions holds in arr@ximate sense only.-With the
nodal basis at hand, the nonlinear flux term is approximatexhanterpolant as follows

Mp
fultn, X) ~ (1)) = > fumgm(x) = ¢ F, 9)
m=1

wheref, = {fx1,..., fX,Mp}T and¢ = {¢1,...,¢MP}T. The nodal representation of tiyedirected flux (fy)(x) is
defined in an analogous fashion. Here, the nodal coordiaagesmply defined byym = fx(Un(Xm)). By adopting the
nodal representation for the nonlinear flux term and thecotarm, the formula (6) becomes the following system of
ODEs,

Mp

du,
Z Mm,nd—tn - Z (SX.(mn) fxn + Symn) fy,n)+
n=1 n=1
My
ffh-namds:Zansn, m=1,...,Np. (10)
=1

where § = s(Un(Xn), Xn, t), and the general element mass matrix and the general elstiféress matrices are

M= (Mm,n)’ Mrn,n = fam%dx (11)
K
Im
Sc= (Sxmn): Sein = [ rondx (12
K
Om
S = (Symn). Symn) =fa—y¢ndx- (13)
K

Notice that, with these nodal representations, the volurtegrals involving the nonlinear flux and the source term
reduces to matrix-vector multiplications. Note that thgethtegrals can be treated in a similar fashion; see Appendi
Appendix B.-The element matrices of each element can be cmu@xactly (or approximately) and stored at the
initial stage of the simulation, leading to a quadrature fapproach [26]. This nodal-integration approach provides
a‘'simple means to evaluating the integral terms dfef®a computational advantage in the sense that the number of
operations required is proportional to the number of nodgandless of the form of the non-linear flux and source
term. The disadvantage of this approach is that there israniatroduced through the interpolation of the nonlinear
flux and the source term. Such an error, known as an alias, enay induce an instability for marginally resolved
computations [24, 25]. In this case, an instability carn sglefectively controlled by employing a de-aliasing strategy
[24, 25].
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Since there is no functional-continuity requirement in éix@ansion coordinates belonging tdfdient elements,
a global system of ODEs is composed simply of the system of ©(B) from all elements. To solve such a global
system, we invert the mass matrix (a matrix associated waightime-derivative term) and apply a time stepping
scheme to the resulting explicit system of ODEs. Since tipaesion coordinates fromftrent elements enter (10)
only through the numerical flux term, the mass matrix is a bldiagonal matrix with the element mass matrices as
the diagonal block entries. The inverse of the mass matrixticas be easily computed by inverting each element
mass matrix. Note that an inversion of the element mass eeatdan be done once and for all at the initial phase of
the simulation. Note this procedure can be made trivial lyosing the local basigy,} forming an orthogonal set
since, in this case, the element mass matrix is a diagonaixnat

The remaining tasks in defining a DG scheme concern choosf{jrtite dimensional approximation space, its
associated basis functions, a time discretization schamgta Riemann solver. The next two subsections describe
two particular sets of polynomial bases, namely the polyhimrnodal bases and the nodal bases, to be used in the
framework described above. Thereafter, we discuss in ariiefie integration scheme employed in this study.

3.2. Polymorphic nodal elements: modal and nodal basis

Below, we summarize the construction of the so-called polyrhic nodal basesfor a convex polygon devised by
Gassneet al. [15]. Such bases consist of an orthogonal polynomial basietused as a set of trial and test functions
and its associated nodal basis counterpart to be used tmgemnlinear terms.

For a given convex polygold, we introduce a coordinate transformatgn: K — %, connecting an elemeit
with a so-called reference elemekit as follows

£ =60 = T8 TxeK, (14)

where¢ = (£, 1), X = (X, Y), Xc denotes the centroid &f, andAX = maxXXmax— Xmin» Ymax— Ymin) IS & scaling factor (see
Figure 2). The reference elemeifdtis the range of the coordinate transformation. Note thatrémesformation (14)

AX NE=1

&)

>
< &
&

Figure 2: Schematic diagram of the coordinate transfoonati

basis ofPP(K), the space of polynomials with degree of at mpstamely

() =€), L= 00+j<p. (15)
1. . .
m=§(|+1+1)(|+1+2)—|. (16)
7
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The number of basis functiom, and the ordep are related through

_(P+1)p+2)

17)

.....

[27] with the usuallL, inner product to the monomial basis. Consequently, thesasictionsg,(£) possess the
orthonormal property, more precisely,

[ Bui@t(de = onn
K
The basis functions on the physical elemkrtan then be defined as follows

Pm(X) = (Pmo &)X, m=1,...,Np (18)

Here, for notational simplicity, we use an identical natatfor the basis functions on-physical elem&nand on the
reference elemerk. Since the transformation (14) isfime, the space spanned (X)) is therefore a space of
polynomials with degree of at mopt In addition,{¢m(x)} forms an orthogonal basis ovirowing to the geometric
transformation (14) having a constant Jacobian.

..........

.....

NP MP
Gm(Xn) = Omn, U = D Tndm(¥) = > Undm(X). (19)
m=1 m=1

As a result, the transformations between two representtice determined by
U=Vl and ¢=V'¢ (20)

whereu = {ug,...,un}T, T = [T ... U}, @ = {p1,-...dm,)T, @ = {$1.....én,)T andV is a generalized Vander-
monde matrix whose entries are given by

Vin = n(Xm), M=1,...,Np, n=1,..., M, (21)

The remaining task:in defining the nodal basis involves cimgos nodal set. The distribution of the nodal points
has a crucial implication on the quality of an interpolarttisiknown that a high quality interpolant, indicated by
a small value of the Lebesgue constant [28], can be achiewhdnede sets having nodal points clustered in the
vicinity of the boundaries of the element. Note that the lsgjue constant indicates how far the interpolant may
deviate from the best polynomial approximation of the fiorct Here, we use the specific framework devised by
Gassneet al. [15] to generate a nodal set yielding such a desirafféece Such a nodal set consists of a set of nodes
on the element boundary and a set of nodes in the interior.intbaor nodes are generated by nesting a set of the
scaled-down boundary nodes in a way that the nodes are desesethe boundaries. More precisely, a nodal set on a
given polygon ofNgo, sides is constructed from the following formula,

I'max

2 (p) = [ Mc(@P(p ~ (Ngon— Pa)1)) (22)
r=0

8
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with

p
I'max = floor| ——— 23
mex ( Ngon - pd) ( )

and 0< pg < Ngon. Here,le(q) denotes a set of boundary nodes which §asl nodes with the Gauss-Lobatto
node distribution on each edge of the considered polygore) = {xc} wherex. is the centroid of the polygon.
The mappingM, generates the interior nodes by scaling down, with a ceféaitor depending on the nesting step
the boundary point s@ls. Note thatMy is an identity mapping. See Gasseer al. [15] for a detailed account of
the mappingM;. Figure 3 shows, as an example, a nodal sepfer5 on a quadrilateral, triangular, and pentagonal
element. Note that the formula (22) is applicable for anteaby p. It uses the parametgy to adjust the number of
interior nodes. See Figure 3(a) and (b) for a comparisoneohtide sets with tlierent valuepy. Note that including
more interior points by increasing the valuemfimproves the quality of an interpolant [15], however, atéipense

of computational fficiency in terms of the number of operations required. It idahat the number of nodés,, p,

(@) Mp =24 (b) My =28 (pg = 1)

® Mo@P () ® Mo@S ()

] ]

M@P () M@P )

(b) M, = 21 (€)M, = 26

Figure 3: Nodal distribution fop = 5(Np = 21): (a) quadrilateral element withy = 0 (b) quadrilateral element withy = 1 (c) triangular element
with pg = 0, and (d) pentagonal elemepi = 0.

andpq are related thorough

1
Mp = Ngon(rmax +1) {p - E(Ngon - pd)rmax} + do, P~(Ngon—Pd)F max* (24)

Table 1 tabulatebl, and M, of the triangular and quadrilateral polymorphic elemerith p ranging from 1 to 6.

The number of nodal pointd, from this construction is in general greater tiNy(except for a triangular element
whereM, = Np). For M, # N,, an inverse of the Vandermonde matrix is not uniquely defif@dcircumvent this
issue, a pseudo-inverse matrix defined in the least squanes,smore specifically,

vi=V VT, V=VvTy, (25)
9
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Table 1: Degrees of freedoMy, and the number of nodal poinkd,, per element of triangular and quadrilateral polymorphérednts.

Quad element

Degreep Tri element Mp
MpZNp Np Pa=0 pg=1
1 3 3 4 4
2 6 6 8 8
3 10 10 12 13
4 15 15 17 20
5 21 21 24 28
6 28 28 32 37

is utilized in defining the inverse transformations
U=Vl and ¢=(NV1Hs. (26)

Note that forM, > N, the sef¢m} defined as above, although it spans every polynomigP{iK), is not a basis since

it is a linearly dependent set. However, for simplicity, vil sall such a set the nodal basis and its members, nodal
basis functions. As a consequence of using the pseudosmVandermonde matrix (25) in defining the nodal basis
functions, the nodal basis function is close but not idexhtic unity at its associated node and is close but not idaintic
to zero at the other nodese. ¢m(X,) # dmn. Therefore, a function value at the nodal points of the poiyial
approximation of a functiori(x) defined by

MP
(pE)0) = f(xm)pm(x) = ¢" f
m=1
is in general not identical to the value of the nodal coortdiriae. (1,f)(x) # f(x;). Note that, in practice, an explicit
form of the nodal basis functions is rarely required. Indteaterpolated values at given points are obtained by first
calculating the modal coordinatés= (f, ..., RP}T from the nodal coordinatek = {fq,..., fMp}T by means of an
inverse transformation and subsequently calculatingrttegpolated values through the modal representation.

Note that the scheme based on the polymorphic nodal basieesithe modal basis functions as the trial and test
functions in the DG formulation. Owing to the orthogonabfythe modal basis, the global mass matrix of this scheme
is diagonal which can be trivially inverted. The elementmcas in the ODEs (10) can be easily realized with the
use of the change-of-bases transformations (20) and (26}e recisely, we evaluate the element generihsiss
matrix by considering

o¢

-

S, =V'S,, where Sy Ef
K

The calculation of the general tiess matrix amounts to determining afsiss matrixSy. We use a technique
similar to that devised by Hesthaven and Warburton [25] mluating such a dtiness matrix. This technique, which
does not require Gaussian integration, is given in AppeAgiendix A.

10
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3.3. Nodal elements: nodal bases on triangles and quaérids

The DG scheme based on the nodal bases uses a nodal basi$yrast an éicient means for treating nonlinear
flux terms but also as trial and test functions in the DG foatiah, in other words, in this schemg,(x) corresponds
simply togm(X). Here, a nodal basis on triangles and tensor-product li@dédd on quadrilaterals are considered.

For triangular elements, although the nodal basis on thngpnstructed as in the previous subsection represents
an excellent candidate, we consider a nodal basis with &f seteopolation points described in [14, 29, 25]. Unlike
the nodal basis described in the last subsection which istagted in an element-by-element fashion, such a nodal
basis is defined in a more conventional wig, through a set of nodal basis functions on a single mastergiea
master element = {£ = (£,n7) | &, > -1 andé + n < 0} is first constructed using the approach described in the
last subsection. Subsequently, nodal basis functionseplhlysical straight-edged triangular elem&rare defined
asm(x) = (¢m o X1)(x) wherex, ! is an inverse mapping of thefene mapping« : Iy — K

3
x(€) = ) Luxf (28)
i=1

wherex! denotes a coordinate of tli-vertex of the element (the vertices are numbered in a coafgekwise
manner) and the functions; are defined by

Lia=—-(E+n/2, La2=(¢+n)/2, and L= (1+n)/2

Defining the nodal basis in this way presents an advantadmtretement matricege. mass and dfiness matrices,
can be simply obtained by appropriately scaling the elemeatrices associated with the master elements owing
to the mapping (28) having a constant Jacobian. Consegu#rlamount of computer memory required and also
computational costs in evaluating the element matricedoaver than a scheme using the nodal basis constructed
directly on the physical elements. It is noted that we usendar-optimal set of nodal points on the master element
given by [29, 25] (as an example, see Figure 4(a) for such alrsed withp = 5). In comparison to the nodal set on a
triangle defined by (22), this near-optimal nodal set haggatyy lower value of the Lebesgue constant for the range
of p considered in this work (see [25, 15] for the Lebesgue comstitheses sets).

() (b)

Figure 4: Distribution of interpolation points on the mastements withp = 5: (a) triangular element, and (b) rectangular element.

For nodal quadrilateral elements, instead of working vi#th the approximation space on the master element
lq = [-1,1)? is selected a®P(lq) = PP([-1,1]) x PP([-1, 1]), the tensor products d#°([-1, 1]), a space of one-

.....

11
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[-1, 1], a two-dimensional orthonormal basis lyrcan then be defined by
Yprnj+iaa(é) = PiEPi(m), 0<i.j<p. (29)
The number of basis functions and the orgén this case is related through
Np = (p+ 1)% (30)

Note the higher number of degrees of freedom in comparisefetnents ofPP-type for an given interpolation order

Lobatto distribution, which is given by
Epepjeiar = (X X)), 0<ij<p, (31)

Legendre-Gauss distribution was also considered in [30fure 4 depicts the nodal set fpr= 5. The nodal basis
functions on the physical (convex) quadrilateral elem€mte then defined an(X) = (¢m o X1)(X) with a bi-linear
mappingxk : lq — K:

4
Xk = > X Lgi€) (32)
i=1
wherexiK denotes a coordinate of tife-vertex ofK (the vertices are numbered in a counter clockwise manner) an

Lar = (1-8Q-n)/4 Loz = (1+&)(1-n)/4,
Loz = (1-&)(L1+n)/4, andlgs = (1+ &)1 +n)/4

Note that except for rectangular and four-sided parallelogelements, the Jacobian of the mapping (32) is not a con-
stant; as a consequence, the element matiege£lement mass and gtiess matrices) of each element can no longer
be obtained by scaling the element matrices associatedhétmaster element. While they can be computed accu-
rately and subsequently stored element-by-element, wetadess accurate but more memory-economical approach
in approximating such matrices [30]. Such an approach, @¥drthe use of a (fixed order) classical two-dimensional
Gauss quadrature, defines the approximate element maig@multiplication of the precomputed matrices defined
on the master element and the precomputed matrices invalitiedhe coordinate mapping. The coordinate-mapping
matrices, which'vary element-by-element, are diagonatlansi require less storage.

3.4. Temporal discretization
The system of ODEs governing the time evolution of the discselution for all elements can be written as

M%:@m (33)

whereM represents the global mass matmy,denotes the global vector of the expansion coordinates givombr-

dinates for the schemes based on polymorphic bases andcumtdinates for nodal bases), ar(d, t) denotes the
right-hand-side vector arising from the terms that are sebaiated with the time derivative.

12
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The time-dependent system (33) is numerically integrasathan explicit fourth-fifth order Runge-Kutta-Fehlberg
(RKF45) method (see.g,[31, 32] for a detailed account of this scheme). RKF45 hagahanism to automatically
select the step siz&t used in the integration to control accuracy of the soluti©ancisely, the integrator utilizes the
fourth-order and fifth-order Runge-Kutta scheme that ulesues of substages of the fourth-order scheme. It ac-
cepts the solution from the fifth order subscheme and adjuststep size to control the truncation error of the fourth
order subscheme. Here, we use the RKF45 subroutine writ&hbmpineet al. [33]. This subroutine requires an
external subroutine returning the right-hand-side veofahe ODEs. We summarize in Appendix Appendix B a
brief outline of steps used in an implementation of the dakin of the right-hand-side vect®d ~*r. Note that, in
the RKF45, the temporal accuracy of the solution is corgrtblly the parameteislerr andabserr, denoted here
aser ande, (e > &4). Since we focus on assessing the accuracy of the spattabtmation, the values of these pa-
rameters are set to Siciently small values in order to keep temporal discret@agrrors negligible when compared
with spatial errors.

4. Numerical Experiments

The numerical performance of the nodal DG (NDG) method aaghtilymorphicnodal DG (PNDG) methoidg|
the hybrid modahodal DG method) are assessed by evaluating their accu@tyuting times, and computational
cost per accuracy. To facilitate the investigation, we @ersa nonlinear problem with a smooth manufactured
solution as well as the nonlinear Stommel problem as tedilgnes. The manufactured-solution problem hasian
priori defined exact solution and thus allows for an accurate-measarror. We therefore use this problem in our
comprehensive assessment. The performance study isccauti®y systematically varying the interpolation orger
of the DG schemes and the element $izd# the computational mesh.

In the study, we mainly use the brokepnorm

1/2
1@, = [Z f f(x)zdx] (34)

KeTh K

in measuring the error in the approximate solution. Conmautimes reported below are an average of at least two
identical simulations. It is importantto note that the catipg times closely relate to the implementation detailse T
main computing cost involves evaluations of the right-haitlk of the ODESs (33). The computing times reported here
correspond to the results from using an implementationrmdibriefly in Appendix Appendix B for the evaluation
of the right-hand-side term.

4.1. Numerical Flux

In this study, we use the local Lax-Friedrichs (LLF) flux asuarrerical flux in the DG discretization. To define
this flux, consider two adjacent elemeds andK* and lete be their common edge (which is not necessarily the
entire edge of an element). The LLF flux is defined as followsxfe e

—~  F())+F(q .
Fo T PO C gy —ap (35)

whereq, andg, are respectively the solution valueabf the elemenK™ andK*, n~ = —n*, and the constar@
corresponds to the largest value, along the exjgd the absolute maximum eigenvalue of the normal flux Jaoobi

13
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matrix,

ag )

A Ny—| +ny— n-ul+ H
(xaqs 70, (In-ul+1+gHI)
whereA(-) denotes the eigenvalue of the matrix. Note that the boynotarditions are enforced weakly by properly
specifying an exterior state in the numerical flux along thggical boundaries such that the desirable conditions are
obtained in a weak sense.

max
sefay,ay]

= max
se[qf 0]

] (36)

4.2. Manufactured solutions

Here, a problem with an exact solution is used as a verifisadol for assessing the DG schemes. Specifically,
we consider the problem in which the vector of source tesfgsx, t) corresponds to a vector of terms arising from
substituting the priori defined smooth functions below

COSE(X — X1)) COSE(Y — Y1)

H = 2% cos@ (X2 — X1)) cosE (Y2 — 1)) coste(t+ )+ Ho
_sin(o(x-x1))cosE(y—y1)) _.

UH = U0 ot — x0)) costr(ys — y) S+ ) 7

U = g SOSCO D SINy= )

Y0 CosEr(xz — x1)) COSE(Yz — Y1)

into the left hand side of (1). In (37%;, w, 7, X1, X2, Y1, Y2, &0, vo @andH, are positive constants. The valueH is
selected sfliciently large so thatl is positive everywhere. The exact solution is used to pilesthe initial condition
and the boundary conditions. Note that when the value f identical to that ofv and the value of, is identical

to that ofug, this manufactured solution leads to a vanishing forcimgtior the depth-averaged continuity equation.
In all numerical calculations reported below, the valuethefparameters appearing in (37) are set to 0.0001405
radm, w = 0.0001405 rats, 7 = 3456 S,x; = 40x 10° m, x; = 150x 10° m,y; = 10x 10° m,y, = 55x 10° m,

& = 0.25m,vp = 0.25 n?/s andHg = 2.m. The simulations are performed in the rectangular coatjmnal domain

of [x1, Xo] X[y1, ¥2]. The integration is carried out until = 172800 s (a period of the solution is approximately 44720
S).

Below, we first present numerical results computed on sleatatgular meshes and subsequently results computed
on unstructured meshes. We consider the DG schemeswihging from 1 to 5. Note that, in the PNDG scheme,
we employ quadrilateral elements with = 1 for p = 1 and 2 and witlpg = 2 for p = 3to 5; for triangular elements,
we usepy = 0 regardless of the ordgxr This choice ofpy stems directly from the aspect concerning accuracy and
computational operations of the polymorphic bases. Theegabf the parameters controlling temporal ergr4s,)
in the RKF45are setto (510°7,5x 1079).

4.2.1. Solution computed on regular meshes

We first consider three so-called regular mesh configuratinamely, a regular triangular mesh, a rectangular
mesh, and a skewed-rectangular mesh. The last configurafiers to a mesh with convex quadrilaterals. In each
configuration, four nested meshes are employed in orderaimigre theh convergence property. In all configurations,
the meshes, from the coarsest to the finest resolution, amattat, h/2, h/4, andh/8 respectively. Figure 5 shows
the coarsest mesh of each configuration, which is built baseal uniform grid of 25< 11 points. For the skewed-
rectangular mesh configuration, the coarsest mesh is @ltaiy relocating interior points of the uniform grid. Each
interior point is relocated in either direction from its girial location with a distance varying randomly from 0O to

14
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(a) Triangular mesHhyg = 480

(b) Rectangular mesiiNg = 240.

(c) Skewed-rectangular medk = 240

AVARRw Ay
v

Figure 5: Coarsest regular mesh used in the SWE with a manugalcsolution; (a) triangular mesh, (b) rectangular meash,(c) Skew-rectangular

(quadrilateral) mesh.
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25% of the grid spacing. Note that the coarsest triangulahmensists of 480 elements and the coarsest quadrilateral
meshes consist of 240 elements. The three finer meshes aieatbby applying successive uniform refinements to
the coarsest mesh. The refinement divides each triangldaotcsimilar sub-triangles and uniformly divides each
rectangle into four sub-rectanglése(, the number of elements increases four times in each refimestep). Note
also that for the same resolution, the number of elementsindctangular mesh is half that of the triangular mesh.

O©CoO~NOOOTA~AWNPE

4.2.1.1. AccuracyAs an example, we plot in Figure 6(a), without smoothing,dpproximate total water column
height at the final simulation tinte = 172800 from the PNDG scheme wiph= 3 andpg = 1 on the rectangular mesh
of h-resolution (the triangles shown there are drawn for pigtpurpose so that the solution at the interior nodes can
be visualized). Note the qualitative agreement with thecegalution depicted in Figure 6(b). Table 2 tabulates the

(a) PNDG solution
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Figure 6: Manufactured-solution test problem: total watdumn att = 2 day; (a)Hn obtained from the PNDG scheme with= 3 andpg = 1 on
the rectangulah-mesh; (b) manufactured exact solution.

accuracy in the approximate total water column heldfthrough the normalizet; errors,|Q|"Y2||H — Hyllg,. In

this table, data from DG schemes is grouped according totarpiolation ordep employed. Within each data group,
we list and highlight the error of the scheme that yields tlistaccurate overall solution; for ease of comparison, we
tabulate the errors of the other schemes as the ratio of thedara specific scheme relative to the error of the most
accurate scheme (for instance, foe 3 andh/2-meshes, the error from the NDG scheme on the triangulah ises
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Table 2: Normalized., errors inHp, Sy = Q" Y2||H - Hnllo,, of the overall most accurate scheme for a given opand error ratios (specific
scheme relative to the most accurate scheme forghats computed on regular meshes, and rate-ajnvergence. A code fpnn] denotes the

DG method preceding it.

& N [ppmn] h

DG bases & Mesh p S in [ppmi] O 2 mesh h-conv. rate
h h/2 h/4 h/8
NDG quad [p1m1] 1 1.61e-02 4.14e-03 1.04e-03 2.61le-04 1.98
1.00 1.00 1.00 1.00 1.98
NDG skewed-quad [p1m2] 1 112 1.12 1.12 1.12 1.99
PNDG quad [p1m3] 1 1.16 1.13 1.12 1.12 2.00
PNDG tri [p1m4] 1 114 1.14 1.14 1.14 1.98
NDG tri [p1m5] 1 114 1.14 1.14 1.14 1.98
PNDG skewed-quad [p1m6] 1 1.29 1.26 1.25 1.25 2.00
NDG quad [p2m1] 2 3.29e-04 3.96e-05 4.91e-06 6.16e-07 3.02
1.00 1.00 1.00 1.00 3.02
NDG skewed-quad [p2m2] 2 149 1.46 1.44 1.43 3.04
PNDG tri [p2m3] 2 212 2.01 1.97 1.97 3.05
NDG tri [p2m4] 2 212 2.01 1.97 1.97 3.05
PNDG quad [p2mb5] 2 352 3.38 3.32 3.28 3.05
PNDG skewed-quad [p2m6] 2 4.59 4.33 4.20 4.13 3.07
NDG quad [p3m1] 3 1.73e-05 1.03e-06 6.43e-08 3.94e-09 4.03
1.00 1.00 1.00 1.00 4.03
NDG skewed-quad [p3m2] 3 172 1.75 1.75 1.74 4.02
PNDG tri [p3m3] 3 3.05 3.26 3.23 3.28 4.00
NDG tri [p3m4] 3 ~3.05 3.26 3.23 3.28 4.00
PNDG quad [p3mb5] 3 6.09 6.50 6.50 6.64 3.99
PNDG skewed-quad [p3m6] 3 . 7.98 8.99 9.12 9.35 3.96
NDG quad [p4m1] 4 8.14e-07 2.56e-08 8.32e-10 2.77e-11 4.95
1.00 1.00 1.00 1.00 4.95
NDG skewed-quad [p4m2] 4 222 2.14 2.10 2.07 4.98
PNDG tri [p4m3] 4  4.69 4.73 4.62 4.43 4.98
NDG tri [p4mA4] 4 475 4.84 4.73 4.54 4.97
PNDG quad [p4mb5] 4 10.74 10.68 10.33 9.70 5.00
PNDG skewed-quad [p4m6] 4 15.00 17.53 17.61 16.64 4.90
NDG quad [p5m1] 5 4.08e-08 6.37e-10 1.0le-11 9.34e-12 5.99
1.00 1.00 1.00 1.00 5.99
NDG skewed-quad [p5m2] 5 263 2.67 2.60 0.93 6.00
NDG tri [p5m3] 5 7.97 7.92 7.75 0.89 6.01
PNDG tri [p5m4] 5 8.12 8.03 7.96 0.43 6.00
PNDG quad [p5mb5] 5 23.48 24.31 24.60 1.46 5.95
PNDG skewed-quad [p5m6] 5 43.48 49.74 50.72 0.93 5.88

* The temporal errors are not negligible in comparison to fagial errors.
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3.26 times the error from the NDG scheme on the rectangular ymeste precisely, 26 x (1.03x 107)). Note that
the higher the error ratio, the less accurate the soluti@eimparison to that of the scheme highlighted.

Evidently, the error levels in the approximate solutiondrae smaller either as the order of basis functipns
increases or as the element size decreases. It can be ab#eateoverall, for the same ordprand similar mesh
resolution, the approximate solutiéfy ordering from greater to lesser accuracy corresponds follbe/ing schemes:
NDG on rectangles, NDG on skewed rectangles, NDG and PNDGamgtes, PNDG on rectangles, and PNDG on
skewed rectangles. The error ratios of less accurate scherttee most accurate scheme are highgriasreases, for
example, the error ratio of the PNDG solution on rectanglstras to the NDG solution on rectangles increases from
approximately 11 times forp = 1 to roughly 24 times fop = 5. Note that, for triangular meshes, the PNDG and NDG
schemes yield solutions with virtually indistinguishabteor levels. This can be expected since both schemes use the
PP-type bases for triangular elements. It is evident that,henrectangular mesh, the NDG scheme yields a more
accurate solution than the PNDG scheme. The same can bes#igé solutions from the NDG and PNDG schemes
on the skewed-rectangular mesh. We believe that such amaiccuracy is attributed mainly to the tensor-product
bases employed in the NDG scheme on rectangles being algeri@dditional cross-polynomial terms not belonging
to the span of polynomial bases employed in the PNDG scheuréhd¥fmore, at the same mesh resolution, the NDG
scheme on rectangles yields lower error levelslirthan the schemes on triangles‘even though a rectangulageiem
used has an area that is twice that of a triangular elementefrer, both elements have similar edge lengths). This
demonstrates to some extent the benefit of the tensor prbdses in terms of accuracy. It can be noticed that, the use
of skewed-rectangular elements, as expected, degradasd¢heacy inH, when compared to the use of rectangular
elements. This suggests that the milder the size transitidhe skewed rectangles, the more accurate the tensor-
product basis solutions. Note that the NDG scheme on skeaatdrgles still produces more accurate solutions than
the schemes on triangles.

The numerical order of convergence, which refers to the eepbvalues from fitting ch® with ¢ being constant to
the error norm<|~Y/2||H—Hyllq, , is reported in the last column of Table 2. We note that alDfteschemes, regardless
of bases or element shape, exhibit a convergence rate abdpyatelyO(hP+?) for the total water column height (note
that each scheme has dfdrent value for the constan). Note that the degradation in the order of convergence for
most schemes with = 5 and theh/8 meshes is due to the fact that the temporal errors from thHedRBKntegrator,
with the specific error tolerance employed, are no longeligibte in comparison to the spatial errors. Note that the
observed convergence rate is-higher than that of the thearestimateO(hP*/?) expected for a Lax-Friedrichs DG
solution to a problem with.nonlinear fluxes [34]. To examihe p-convergence properties, the error levels obtained
for each mesh resolution are plotted against the opdesed on the semi-log scale (error levels on a log scalepand
on a linear scale). Figure 7 shows examples of such plothiédr-tandh/2-meshes. The curves for all DG schemes
appear approximately as straight lines, indicating thlaD&@ schemes considered exhibit the expected exponential
convergence rate with respectpo Although not reported here in detail, we note that the cogemece rates afiH
andvH are betwee®(hP) andO(hP*Y). The convergence of the schemes on rectangles and triamgpear to behave
somewhat irregularly; the convergence rates of these sehane typically close to the expected r@gP+/?) for
evenp and close t@(hP+) for odd p. This somewhat irregular behavior appears less pronotindbé schemes on
skewed rectangles with the numerical order of convergeairgliypically close tg + 1 for both odd and evep.

4.2.1.2. Computing timesTable 3 tabulates computing times (in seconds), denot&g asquired in the simulations.
Note that data reported are an average of three identicalaiions (except for the schemes wijih= 5 andh/8-mesh
combination where they are the results from two runs). s thble, data is grouped according to the interpolation
orderp used. Within each data group, the computing times of thersehssing the least computing time are listed and
highlighted; the computing times of the other schemes draldted as the ratio of the computing time of a specific
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Table 3: Computing time3, (in seconds) of the overall fastest DG scheme for a givenrgudend time ratios (specific scheme relative to the
fastest scheme for thal), as computed on regular meshes. A codenip] denotes the DG method preceding stdenotes the rate of computing

times as function of, i.e. Tc ~ O(h®).

Tcof [ppmA] __ h

DG Bases& Mesh T, of [ppmi] on ﬁ-mesh srate
h h/2  h/4 h/8
PNDG quad [plm1] 1 124 827 6068 41151 -2.80
1.00 1.00 1.00 1.00 -2.80
PNDG skewed-quad [p1m2] 1 1.02 1.07 0.97 1.01 -2.78
NDG skewed-quad [p1m3] 1 143 140 1.30 1.32 -2.75
NDG quad [p1m4] 1 135 143 132 1.36 -2.79
PNDG tri [p1m5] 1 228 279 236 2.28 -2.77
NDG tri [p1m6] 1 291 283 262 2.53 -2.73
PNDG skewed-quad [p2m1] : 238 1755 11550 76385 -2.77
1.00 1.00 1.00 1.00 -2.77
PNDG quad [p2m2] 2 1.02 095 1.06 1.00 -2.78
NDG skewed-quad [p2m3] 2 173 154 148 151 -2.70
NDG quad [p2m4] 2 178 162 154 1.53 -2.70
PNDG tri [p2m5] 2 200 220 217 2.10 -2.79
NDG tri [p2m6] 2 3.03 265 270 2.71 -2.72
PNDG quad [p3m1] 3 411 2727 19791 126896 -2.77
1.00 1.00 1.00 1.00 -2.77
PNDG skewed-quad [p3m2] 3 0.99 1.06 0.96 1.04 -2.78
NDG skewed-quad [p3m3] 3 188 181 1.67 1.81 -2.74
NDG quad [p3m4] 3 197 195 1.79 1.78 -2.71
PNDG tri [p3m5] 3 184 219 196 2.01 -2.79
NDG tri [p3m6] 3 280 270 248 2.58 -2.72
PNDG quad [p4m1] 4 688 4424 28808 202288 -2.73
1.00 1.00 1.00 1.00 -2.73
PNDG skewed-quad [p4m2] 4 1.03 1.08 1.07 1.24 -2.81
PNDG tri [p4m3] 4 171 210 2.08 1.93 -2.78
NDG skewed-quad [p4m4] 4 209 208 2.02 2.22 -2.75
NDG quad [p4mb5] 4 217 217 220 191 -2.68
NDG tri [p4m6] 4 292 298 3.06 2.76 -2.71
PNDG quad [p5m1] 5 1070 6905 43926 319869 -2.68
1.00 1.00 1.00 1.00 -2.68
PNDG skewed-quad [p5m2] 5 1.03 1.09 1.14 1.47 -2.75
PNDG tri [p5m3] 5 166 200 1.75 2.08 -2.72
NDG skewed-quad [p5m4] 5 229 232 228 2.93 -2.67
NDG quad [p5m5] 5 240 241 242 2.10 -2.69
NDG tri [p5m6] 5 275 272 266 2.52 -2.66
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(a) h-resolution (b) h/2-mesh
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Figure 7: Normalized_»-error|Q"Y/2||H — Hhllo, att = 2 days as a function of order of bages(a) h-meshes; (bh/2-meshes.

scheme relative to the computing time of the fastest schdmevery scheme, ‘while holding the mesh resolution
unchanged, the computing time required increases as #rpaiation ordep of the scheme increases. Such increases
in computing times stem primarily from the following two szms. First, the degrees of freedom per elementincrease
asp increases. Second, the time step diteised is smaller ap increases in order to keep the temporal accuracy
suficiently small and, as an explicit time scheme is used, to mmimumerical stability. This aspect is implicitly
reflected by numerical data listed in Table 4 which shows aregse ilfNrps (i.e., decrease int) as p increases.
Note thatNrus denotes the total number of calls made within'the RKF45 iatieg to a subroutine calculating the
right hand side of the ODEs (33). Likewise, while fixifpg the computing times required increases as the mesh is
refined. The increasing computing time is the direct conerge of an increase in the number of elements (hence
the total DOFs). Furthermore, as the mesh size decreasetinh step sizét used is smaller in order to maintain
temporal accuracy and to ensure stability; this aspect eadisrerned in an increasinggys as the element size
decreases (see Table 4).

It can be observed from Table 3 that, .in the calculations dh@asequadrilateral elements, the PNDG scheme
requires less computing time (approximately betwedntd 24 times) than the NDG scheme. This behavior is to
be expected since, on quadrilateral elements, the DOFslgraent of the PNDG scheme are less than that of the
NDG scheme for alp. Furthermore, it can be noticed in Table 4 that, in the quatérial-element calculation8/rys
required in the PNDG scheme are also fewer than that of the B&®me; this results in an additional reduction in
computing time for.the PNDG scheme in comparison to the NDitg@se. Table 3 shows that the PNDG scheme on
guadrilaterals is faster than the PNDG scheme and NDG scharm@ngles. This is an expected behavior and stems
directly from the fact that the number of nodes per elemeth®fpolymorphic quadrilateral element is only slightly
greater than that of the polymorphic and nodal triangulameint and the number of elements in the quadrilateral
mesh. In other words, for a given ordeand similar mesh resolution, the PNDG scheme on quadalistperforms
fewer computational operations than the PNDG and NDG schmamntaangles. It can be noticed from Table 3 that
the PNDG scheme on triangular is faster than the NDG schertréaoigles. We note that this lower computing in the
PNDG scheme is a result of the RKF45 time integrator autaraliiyiselecting larger time step siz&sfor the PNDG
scheme (this reflects in a fewer calls to the subroutine atialy the RHS vector—see Table 4). The NDG scheme
on quadrilaterals, due to the use of tensor product baseshipher DOFs per element than that of the PNDG and
NDG scheme on triangles, more precisely; 2/(p + 2) times higher DOFs per element. The cost per element in
evaluating one volume integral in the NDG scheme on quadrads is approximately 4 4(2p + 3)/(p + 2)? times
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Table 4: The number of calls to a subroutine computing RH$oveequired in RKF4BPNDG and RKF4BNDG methods on regular meshes.

PNDG tri NDG tri

p h b2 h/4 h/8 h h/2 h/4 h/8

1 15853 25117 39325 61759 19144 30079 47743 76507
2 21565 34807 54193 84075 30475 48547 75679 118123
3 27067 42457 66109 104439 39733 61609 95995 156349
4 32053 50293 78765 130015 53581 84673 132133 207202
5 36823 57937 93001 171510 62455 96691 151249 248853

PNDG quad NDG quad

p h b2 h/4 h/8 h h/2 h/4 h/8

1 11431 17611 28477 45667 13665 22708 36832 57985
2 17191 27601 42967 66769 25739 39614 60774 93475
3 22405 34927 54367 84859 36515 55881 85801 132615
4 26875 42043 65677 103247 47704 73195 112633 175368
5 31255 48997 76807 122707 59581 91519 141325 221995

higher than the NDG and PNDG scheme on triangles. Hencen ibeaxpected that the reduction of the number of
elements associated with the rectangular mesh migigetathe higher cost of using tensor-product bases only up to a
certain interpolation ordep. A crude estimate made in the previous work [30] shows thattist of evaluating the
RHS vector in the NDG scheme on quadrilaterals is expectée tgreater than that of the NDG or PNDG scheme
on triangles forp > 1. Although not shown here in detail, we note that the vadus which the cost of evaluating
RHS vector in the NDG scheme on quadrilaterals becomes mpensive is noticeably higher than the estimate. We
speculate that thefféciency of memory triiic and cache management are partial reasons explaining vghoctturs at
p higher than the estimate. In terms of wall clock time, Tabéhdws that the NDG scheme on quadrilateral becomes
slower than the PNDG scheme on triangles wiper 4; the NDG scheme on quadrilateral is faster the NDG on
triangles for allp considered herep(= 1 t0 5).

It can be verified from datain Table 3 that, for a fixed integgioin orderp and varyingh, the computing timé& .
behaves approximately likeh®, wherec ands are constant, in other words

Te ~ O(h®). (38)

The numerical rates are tabulated in the last column of Table 3. Notice that tiiieidinces between the radare
relatively small (the value of ranges from-2.7 to —2.8.) and the rates appear to be independent of the interpolati
orderp. The values of the constaaitas expected, vary for theftérent DG schemes as well as the interpolation order

p.

4.2.1.3. Computational cost per accuracyhe critical question when comparing numerical technigsidse compu-
tational cost for a specific level of accuracy, or conversaherror level to be achieved for a given computational cost
Figures 8 shows on a log-log scale the accuradyyahrough normalized, errors versus the computing time. In this
figure each curve represents the data computed on the fonedefieshes with the interpolation orgebeing held
constant. Figure legends indicate the combination of DGshasesh configuration, and interpolation orgefrom
which the data are obtained. In each figure, we plot the data fne PNDG scheme on triangles for inter-comparison
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purposes. It can be observed that all the curves appeanap@tely as straight lines on a log-log scale. Therefore,
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Figure 8: Normalized error€2|"Y2||H — Hy|lq att; = 172800vs. computing times in seconds of DG solutions on regular gri8ielid lines
represent the data of (a) PNDG on rectangles, (b) NDG onrrglets, (c) NDG on triangles, and (d) NDG on skewed-rectandliashed lines in
(a)-(d) represent the data of PNDG on triangles= p=1,-o-p=2,{}+ p=3,-V-p=4,and-a-p=5

the computational time as a function of accuracy in the totdkr column heighit,, can be approximated by
Te ~ C2(En)* (39)

wherec; ands, are respectively the constant and the rate of the cost fumciihe discussions above on accuracy and

computing times implies that
2.7

T —(p+1)
The constant pairsy, ;) for the cost functions associated with the DG schemes dereil are tabulated in Table 5.

It can be noticed from Figures 8 that, for a given level of aacy, the wall clock time decreases substantially as
p increases. To gain more insight into thieet of p on a cost per accuracy viewpoint, we evaluate the computing
time for a specified level of errarfrom the derived cost functionse. finding T, by using (39) with&, = . Table
6 tabulates the computing times required in each DG schemhevaiious orderg to yield a numerical solution with
the specified levels of errar. The value inside the parenthesis denotes the cost ratleeafdmputational cost for
the identical error level using — 1 to that usingp order interpolants. Note that such a value indicates a texuin

22

S (40)



O©CoO~NOOOTA~AWNPE

Table 5: Constant and ratex( s,) in the cost functiond . = c(En)% of DG schemes on regular grids.

DG bases & mesh Cost codlicients €, )

p=1 p=2 p=3 p=4 p=5
NDG tri (1.49,-1.37) (1.07,-0.89) (1.40,-0.68) (2.2754). (4.01,-0.44)
PNDG tri (1.14,-1.40) (0.65,-0.91) (0.82,-0.70) (1.1%4) (2.15,-0.45)
PNDG skewed-quad (0.58,-1.39) (0.69,-0.90) (0.81,-0.70).08,-0.57) (2.25,-0.47)
PNDG quad (0.47,-1.40) (0.51,-0.91) (0.72,-0.69) (1a65) (2.10,-0.45)
NDG skewed-quad (0.68,-1.39) (0.46,-0.89) (0.63,-0.68P.9%,-0.55) (1.93,-0.45)
NDG quad (0.51,-1.41) (0.33,-0.89) (0.50,-0.67) (0.764) (1.25,-0.45)

cost when raising the interpolation order frgm- 1 to p (for example, withe = 1.0 x 1074, the cost required in the
NDG scheme on triangular elements reduces approximatélyidi2s when raising from 1 to 2). Results shown in
this table clearly indicate the appeal of using higher osdliemes from the perspective of cost per accuracy. As an
example, suppose that an accuracy of®i8 required, the use of schemes wjitlz= 1 would require approximately on
the order of 3 years of computing time, a prohibitively imgieal cost (this corresponds to an expected cost on the
serial machine; a dramatically lower wall clock time can biiaved by utilizing a parallel implementation). By using
schemes witlp = 2, the computing times required are approximately-on therastll to 2 days. Note that computing
time decreases approximately three orders of magnitudesdliemes witp = 3 requires approximately on the order
of 1 to 2 hours of computing time. Note the cost reduces rouffhir orders of magnitude compared to the schemes
with p = 1 and approximately an order magnitude compared to the sshevithp = 2. The computing times
required reduce further as the interpolation ord@ncreases. It is evident from Table 6 that the smaller theifipd
error levele, the more pronounced the gain in computational cost peracgwachieved by raising the interpolation
orderp of the scheme. Although the computational cost for a giveellef accuracy reduces as the interpolation order
p increases, the benefit diminishes as indicated by the reduatthe cost ratios inside parentheses shown in Table
6. Arguably, although the scheme wiph= 2 shows the highest gain in terms of the cost reduction in esispn to

the scheme wittp — 1, using the schemes with= 3 appears to be an appealing choice due to an evident significa
performance gain over usirmm= 1 while showing moderate gains when compared to the scheitlepw 2.

Table 7 shows theffect of the diferent combinations of DG bases and mesh configurations ondsteper
accuracy performance. In this table, the correspondingpeimg cost for the given levels of accuracy of the PNDG
scheme on triangles are highlighted. The computing cogithef combinations of DG bases and mesh configurations
are reported as a ratio of the computing time for the spedafieme to the computing time for the PNDG scheme on
triangles for the same interpolation orgefthe higher the ratio, the higher the computational coatired to achieve
a specified level of accuracy in comparison to that of the PNbDI@&me on triangles). It can be seen from this table
that the /NDG_scheme on rectangles exhibits the highest erstiqruracy performance among the combination of
bases and mesh configurations considered. We note the parioe gain achieved with nodal quadrilateral elements
isinot-as pronounced in comparison to the gain realized ukimbigh order schemes.

The numerical results discussed above and in the previati®se demonstrate the appeal of the use of tensor
product bases on quadrilaterals, from both accuracy arnigpepaccuracy perspectives. Note that nodal tensor-ptoduc
basis can represent more cross polynomial terms than tles bagriangles; thus it can be expected in general that, for
a problem with a smooth solution, the approximate solutiomfthe nodal tensor-product elements would have higher
or approximately the same level of accuracy as those frorbalses on triangles. This expectation together with the
presented numerical results leads us to believe that thefusethods with nodal tensor-product bases is particularly
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Table 6: Computing timeT¢ (in seconds) for a given level of errerin Hy, of various DG solutions on regular grids. Numeric valueshie t

parenthesis are the ratio betweEhof a DG scheme ordey — 1 and that ofp.

DG bases p Projected computing tim&:
& mesh £="5.0e-03 &=1.0e-04 & =1.0e-06 & =1.0e-08

1 1898 452923 2.8568 1.80e-11

2 82(23.1) 2934(154.4) 197228(1446.1) 1.83€(13546.9)
PNDG tri 3  33(2.5) 512(5.7) 12757(15.5) 317901(41.7)

4  22(1.5) 200(2.6) 2629(4.9) 34605(9.2)

5 24(0.9) 140(1.4) 1133(2.3) 9154(3.8)

1 2173 470487 2.646€8 1.48e-11

2 121(18.0) 3950(119.1) 239892(1101.1) 146&(10177.3)
NDG tri 3 51(2.3) 736(5.4) 16901(14.2) 387849(37.6)

4 41(1.3) 344(2.1) 4230(4.0) 52042(7.5)

5 42(1.0) 235(1.5) 1799(2.4) 13768(3.8)

1 924 213139 1.29e08 7.80e-10

2 82(11.3) 2796(76.2) 178196(723.4) 1.108(6863.8)
PNDG skewed-quad 3 33(2.4) 521(5.4) 13178(13.5) 333343(34.1)

4  22(1.5) 211(2.5) 2953(4.5) 41296(8.1)

5 27(0.8) 168(1.3) 1455(2.0) 12580(3.3)

1 777 185355 1.17%08 7.35¢-10

2 64(12.2) 2241(82.7) 148117(787.7) 9789892(7502.1)
PNDG quad 3 28(2.3) 426(5.3) 10367(14.3) 252525(38.8)

4 <21(1.3) 178(2.4) 2207(4.7) 27334(9.2)

5 23(0.9) 133(1.3) 1053(2.1) 8361(3.3)

1 1048 236797 1.396€8 8.25e-10

2 51(20.5) 1667(142.1) 100492(1390.9) 6059758(13615.6)
NDG skewed-quad 3 23(2.2) 330(5.0) 7576(13.3) 173840(34.9)

4 17(1.4) 149(2.2) 1895(4.0) 24177(7.2)

5 21(0.8) 117(1.3) 915(2.1) 7129(3.4)

1 886 217372 1.4108 9.20e-10

2 37(23.8) 1227(177.1) 75121(1882.6)  4598333(20009.8)
NDG quad 3 18(2.1) 247(5.0) 5487(13.7) 121693(37.8)

4  13(1.3) 111(2.2) 1336(4.1) 16131(7.5)

5 13(1.0) 78(1.4) 612(2.2) 4830(3.3)
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Table 7: Manufactured-solution problem on regular gridsnputing timeT > for a specified level of errarin Hp, of the PNDG triangular solution
for a givenp and time ratios (given schemes relative to the PNDG schentigamgles for thaip). A code [mn] denotes the DG scheme preceding
it.

T2 of [mn)/TY* of [m1]

DG bases & mesh p=1 p=2 p=3 p=4 p=5

£=2.0e-03 £=3.0e-05 £=9.0e-07 &=2.0e-08 ¢=7.0e-09
PNDG tri [m1] 6841 8816 13731 23478 10762

1.00 1.00 1.00 1.00 1.00
NDG tri [m2] 1.12 1.31 1.32 1.52 1.50
PNDG skewed-quad [m3] 0.48 0.94 1.03 1.18 1.38
PNDG quad [m4] 0.41 0.76 0.81 0.80 0.91
NDG skewed-quad [m5] 0.55 0.55 0.59 0.70 0.78
NDG quad [m6] 0.47 0.41 0.43 0.47 0.53

appealing for the low to moderate interpolation orgesince higher fiiciency in terms-of cost per accuracy is likely
be achieved. Note also that although they may not be paatigidppealing in terms of cost per accuracy, the schemes
based on the polymorphic bases on quadrilaterals showistipein terms of the computing times required to reach
the final solution. This makes such the scheme appealing aemasio where the computational time available is
limited.

We have also examined a similar performance analysis baséided ., error. Although not reported in detail
here, we note that the results exhibit similar behavior & Hased on the, error described above.

4.2.2. Solution computed on unstructured meshes.

Next we consider DG solutions on unstructured meshes witlows elements and configurations, namely, an
unstructured triangular mesh, a quadrilateral mesh, adrtik@ngular-quadrilateral mesh, and a polygonal mesh. In
each configurations, we employ meshes of varying levelssaflui¢gion. They are denoted, from the coarsest to finest,
h, h/2,h/4, andh/8, respectively. Figure 9.shows themesh for each configuration. The triangutamesh consists
of 792 triangular elements with the element edges of lengthast equal to 4500. The finer triangular meshes are
obtained by applying successive regular refinements; seke 84a) for the number of triangles in each triangular
mesh. We obtain other mesh configurations from the triamgnéshes. The mixed triangular-quadrilateral mesh is
built naively by simply merging pairs of two adjacent tridegin the triangular mesh into quadrilaterals. The merging
process is conducted in such a way that every resulting datetal element has a determinate Jacobian. In other
words, we do not merge two triangles forming a quadrilateitd interior angles equal to or greater than 18@s is
seen in Figure 9(b), the resulting mixed meshes containgtitar elements scattered over the computational domain.
Table 8(b) lists the number of triangular and quadrilatelainents in each mixed mesh. For the polygonal mesh, an
elementis formed by first collecting a set of all triangleariig a vertex and subsequently connecting a line between
the centroids of any two elements in such a set having a coneaige. In this way, the number of sides of the resulting
polygon corresponds to the number of triangles sharingéhtex. The total number of polygons in the resulting mesh
therefore equals the total number of vertices in the givieamgular mesh. Note that any triangulation of a given set
of n points yields 2 — 2 — k triangles [35] wherd is the number of points lying on the boundary of the convex hul
of the considered set. Therefore, for a triangular mesh thigtumber of vertices in the interior far greater than the
number lying on the boundary, the number of elements in theltiag polygonal mesh would be fewer than that in
the considered triangular mesh. Table 8(c) tabulates th&beuof elements classified by shapes in each resulting
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(a) Triangular mesh\e = 792

(b) Mixed triangular-quadrilateral mesNg = 457

(c) Polygonal meshy = 433

(d) quadrilateral mesh\e = 594

Figure 9: Unstructuret-meshes employed in DG solution to the SWE with a manufadtacdution; (a) triangular mesh, (b) quadrilateral mesh,
(c) mixed triangular-quadrilateral mesh, and (d) polydenash.

polygonal mesh. For the same so-called resolution, thénoataber of elements in the polygonal mesh is less than
that of its associated triangular mesh. For a given triaangulesh, the quadrilateral mesh is built by placing a point
at the centroid of each triangle and forming quadrilatelainents by connecting this point to the mid points of the
element edges (we note that this construction is suggestath lanonymous reviewer). This strategy divides each
triangle into three quadrilaterals. The mesh-size remolutf the derived quadrilateral mesh is comparable to that
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Table 8: Number of elements categorized by shapes in cotignahmeshes; (a) triangular meshes, (b) mixed triangmleadrilateral meshes, and
(c) polygonal meshes.

(a) triangular meshes (b) mixed triquad meshes
Meshres.  Tri Meshres. tri quad Total
h 792 h 122 335 457
h/2 3168 h/2 354 1407 1761
h/4 12672 h/4 870 5901 6771
h/8 50688 h/8 1902 24393 26295

(c) polygonal meshes
Meshres. quad pentagon hexagon heptagon octagon Total

h 2 88 327 14 2 433
h/2 2 160 1479 14 2 1657
h/4 2 304 6159 14 2 6481
h/8 2 592 25023 14 2 25633

of a triangular mesh resulting from applying regular refieainto the given triangular element. The quadrilateral
meshes at the so-callégd2i-resolution is hence defined from thg2i-1-triangular mesh. Note that, at the same mesh
resolution, the number of elements in the quadrilateraln®8/4 of that in the triangular mesh.

In the numerical calculations, the parameters in the RKi8 integrator are settg = 1x10%ands, = 1x107°.

The integration is carried out until reachibg= 97200. For the PNDG scheme, the polymorphic bases pyith 1

are utilized for quadrilateral elements. For polygonal lness we consider a strategy, employed by [15] to solve the
compressible Navier-Stokes equations, in defining a sebdékpoints for the polymorphic bases. This strategy uses
(22) withrmax (instead ofpy) as a free parameter in defining the nodal set of the elemédrdsanthe nodal sets obtained
usingpg = 1 contain less than or equal to a single nodal point in theioteMore specifically, for such elements,
their associated nodal sets are defined as those obtainetjusfimg the parametqyy in (23) so thatn,x = 1 and in
additionp — (Ngon — pg) > O for p'> 3. This strategy ensures the existence of interior nodealifetements. We find
that this strategy yields noticeably more accurate apprate solutions than the strategy using the fixed value 1

(at least two times more accurate in thenorm forp > 3).

Table 9 tabulates the-normalizegerrors in the total water column heighf, at the final time of simulatioty. As
presented in the previous section, data are grouped aogaaid. In each group, we highlight the combination of DG
basis and the mesh configuration that overall yields the amustrate solutions. The results for other combinations are
tabulated as the ratio of the error from the specific schentteeterror associated with the most accurate scheme. The
last column inthis table reports the numerical order of @wgence of each DG scheme. All DG schemes, regardless
of bases or‘mesh configurations, converge approximatelyeatate ofO(hP*!) for the total water column height
Hh. It can be observed that the NDG scheme on quadrilateral@sgshlds the most accurate solution among the
combinations of bases and mesh configurations. The PNDGreche mixed meshes are less accurate than the other
schemes. The data from the calculation on the mixed mesHe&sates, as expected, that the less accurate element
type dictates the error levels. More precisely, it can beeolel that the PNDG solution on mixed meshes is less
accurate in comparison to the PNDG solution on triangulastras; their error ratios drift further apartascreases.
This clearly reflects theffect of using the less accurate quadrilateral polymorpleEmehts. On similar resolution,

27



O©CoO~NOOOTA~AWNPE

Table 9: DG solutions on unstructured meshes. Normalizeerrors inHp, &y = |QY2||H - Hhllo, of the overall most accurate scheme for a
given orderp, error ratios (specific scheme relative to the most accdoatthat p), and rate oh-convergence. A code fpnn] denotes the DG

method preceding it.

&Ex In [ppmn] h

on —-mesh

DG bases & mesh p Sy infppml] — 2d h-conv. rate
h h/2 h/4 h/8
NDG quad [p1m1] 1 1.02e-03 2.12e-04 4.91e-05 1.21e-05 2.13
1.00 1.00 1.00 1.00 2.13
PNDG quad [p1m2] 1 0.9 1.12 1.25 1.28 1.96
PNDG ngon [p1m3] 1 1.09 1.24 1.30 1.30 2.08
NDG tri [p1m4] 1 1.02 1.27 1.38 1.40 1.98
PNDG tri [p1m5] 1 1.02 1.27 1.38 1.40 1.98
PNDG mixed [pIm6] 1 1.40 1.47 1.56 1.67 2.10
NDG mixed [p1m7] 1 143 1.47 1.57 1.67 211
NDG quad [p2m1] 2 3.56e-05 3.23e-06 3.85e-07 4.42e-08 3.20
1.00 1.00 1.00 1.00 3.20
NDG tri [p2m2] 2 1.18 1.28 1.30 1.52 3.09
PNDG tri [p2m3] 2 1.18 1.28 1.30 1.52 3.09
NDG mixed [p2m4] 2 233 2.21 2.10 2.44 3.28
PNDG quad [p2m5] 2 287 2.88 2.29 2.02 3.39
PNDG ngon [p2mé] 2 1.87 2.66 2.88 3.19 3.02
PNDG mixed [p2m7] 2 3.84 4.06 3.60 3.55 3.34
NDG quad [p3m1] 3 1.95e-06 1.10e-07 6.13e-09 3.02e-10 4.21
1.00 1.00 1.00 1.00 421
NDG tri [p3m2] 3 1.45 1.50 1.54 1.90 4.09
PNDG tri [p3m3] 3 1.45 1.50 1.54 1.91 4.09
PNDG quad [p3m4] 3 2.00 1.89 1.80 2.08 4.20
NDG mixed [p3mb5] 3 2.08 2.13 2.07 2.37 4.27
PNDG ngon [p3m6] 3 189 2.16 2.53 3.27 4.03
PNDG mixed [p3m7] 3 8.07 8.35 9.71 12.65 4.10
NDG quad [p4m1] 4 8.00e-08 2.48e-09 7.92e-11 4.99
1.00 1.00 1.00 4.99
NDG tri [p4m2] 4 1.36 1.34 1.64 4.85
PNDG tri [p4m3] 4 152 1.39 1.65 4.93
PNDG quad [p4m4] 4 218 1.78 1.75 5.15
NDG mixed [p4mb5] 4 236 2.09 2.50 5.09
PNDG ngon [p4m6] 4 273 2.41 2.40 5.21
PNDG mixed [p4m7] 4 14.28 10.98 8.92 5.48
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the NDG scheme on a mixed mesh, within the rangp tsted, yields a less accurate solution than the schemes on
triangular meshes; however, their accuracies overall@pioebe closer ap increases. This indicates that the error
levels in the NDG solutions on mixed meshes is strongly tectdy the presence of triangular nodal elements.
Figures 10(a)-(f) show, on a log-log scale, the accuraciipthrough thel, error versus the computing times
required in the simulations. Each curve represents data fine DG solution with a givep on various mesh resolu-
tions. See the legends accompanying the plot for the coribinsof DG basis, mesh configuration, and interpolation
degreep with which the curves are associated. Additionally, in efighre, the data from the PNDG scheme on
triangles is plotted for comparison purposes. As the cuaygsear as straight lines, the cost functions are well ap-
proximated byT. = c,(En)%. Table 10 tabulates the constant paosg §;) of the cost function associated with the

DG schemes tested. Roughly speaking, the computationisl abhe DG schemes are proportional approximately to
8;2.7/(p+1).

Table 10: DG solutions on unstructured meshes. Constantaémd;, ) in the cost functiond ¢ = c(En)*2.

DG bases & mesh Cost codficients @, s)

p=1 p=2 p=3 p=4 p=5
NDG tri (0.04,-1.42) (0.14,-0.90) (0.38,-0.68) . (0.435®). (1.32,-0.45)
NDG quad (0.07,-1.32) (0.16,-0.88) (0.42,-0.67) (0.5B6)p (1.11,-0.47)
NDG mixed (0.05,-1.37) (0.26,-0.86) (0.58,-0.65) = (0.0K4) (1.18,-0.46)
PNDG tri (0.03,-1.42) (0.13,-0.89) (0.43,-0.65) (0.4%4) (0.91,-0.45)
PNDG quad (0.02,-1.41) (0.52,-0.81) (0.52,-0.64) (0@¥32) (1.51,-0.43)
PNDG mixed (0.04,-1.37) (0.36,-0.84) (0.67,-0.67) (1-081) (3.75,-0.42)
PNDG ngon (0.05,-1.34) (0.18,-0.90) = (0.48,-0.66) (1@32) (2.69,-0.44)

To examine the f@ect of p from a cost per accuracy perspective, we evaluate from theediecost functions the
computing cost required to achieve the specified error $exellable 11 tabulates these data for each DG solution
on unstructured meshes. Note that the number inside th@tbass corresponds to the computational cost ratio
of the estimated runtime of thep (- 1) scheme to that of thp scheme for the identical accuracy level. In other
words, it reflects the gain in costhigiency achieved by increasing the interpolation order bg. ohhe data, which
exhibits a similar trend to the DG solutions on regular msslotearly show the benefit of using the higher order
schemes. More precisely, to-achieve a specified level ofracguthe computational cost required for the high order
scheme is considerably less than that required for the sehdth p = 1. As an example, for a specified accuracy
of e = 1.0x 10°° or LOx 1077, the computational cost of the schemes witk 3 are typically three to four orders
of magnitude lower than the schemes wjith- 1. The computational cost for a specified level of error deses as
the interpolation ordep used in the scheme increases; however, the benefit gain &ising the interpolation order
p eventually diminishes as indicated by the reduction in th&t catios. Although the scheme wigh= 2 exhibits the
highest cost reduction from the perspective of compariegtst required in the scheme wigho that required in the
scheme withp — 1, the use of schemes with= 3 appears, to some extent, to be more appealing in the seatdaeh
scheme yields significant gains in performance over therseheith p = 1 while still showing relatively large gains
when compared to the scheme wjih- 2.

Table 12 compares the cost for a given accuracy level fronditfierent DG schemes. In this table, the results of
the NDG scheme on triangles are highlighted in the gray béve. résults of the other schemes are reported as a ratio
of the estimated time of the specific scheme to that of the NE&}@mme on triangles for the same interpolation oggler
(the higher the ratios, the higher the computational cagtired to achieve a specified level of accuracy in comparison
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Table 11: DG solutions on unstructured grids. Computingfiifi (in seconds) required to achieve a given level of egrior Hy. A numeric value

in the parenthesis denotes the ratio betw&gof a DG scheme with interpolation ordpr 1 and that ofp.

DG bases p Computing timg
& mesh £=5.0e-04 &= 1.0e-05 & =1.0e-07 & =1.0e-09

1 1898 488329 3.35968 2.311e11

2 134(14.1) 4548(107.4) 287597(1168.0) 1.84@K12704.5)
NDG tri 3 64(2.1) 910(5.0) 20509(14.0) 462393(39.3)

4 31(2.1) 283(3.2) 3788(5.4) 50687(9.1)

5 39(0.8) 223(1.3) 1736(2.2) 13496(3.8)

1 1550 269879 1.17268 5.092e 10

2 124(12.5) 3848(70.1) 218479(536.6) 1.240@(4104.7)
NDG quad 3 66(1.9) 890(4.3) 19022(11.5) 406775(30.5)

4 36(1.8) 322(2.8) 4225(4.5) 55453(7.3)

5 38(0.9) 238(1.4) 2040(2.1) 17464(3.2)

1 1641 352711 1.96468 1.093e-11

2 175(9.4) 5019(70.3) 261323(751.4) 1.3608(8033.4)
NDG mixed 3 78(2.2) 975(5.1) 19015(13.7) 370794(36.7)

4  44(1.8) 360(2.7) 4312(4.4) 51679(7.2)

5 37(1.2) 225(1.6) 1875(2.3) 15628(3.3)

1 1040 256843 1.68368 1.103e-11

2 239(4.4) 5603(45.8) 230058(731.6) 9445666(11677.9)
PNDG quad 3 68(3.5) 826(6.8) 15740(14.6) 299839(31.5)

4 - 38(1.8) 292(2.8) 3202(4.9) 35154(8.5)

5 41(0.9) 219(1.3) 1573(2.0) 11289(3.1)

1 1237 262204 1.43668 7.866e-10

2 218(5.7) 5886(44.5) 284620(504.6) 1.3¥68(5715.3)
PNDG mixed 3 109(2.0) 1494(3.9) 32705(8.7) 716092(19.2)

4 84(1.3) 606(2.5) 6252(5.2) 64476(11.1)

5 85(1.0) 467(1.3) 3459(1.8) 25637(2.5)

1 1356 252596 1.18868 5.584e10

2 164(8.3) 5511(45.8) 345118(344.1) 2.1608(2583.7)
PNDG polygon 3 75(2.2) 1012(5.4) 21551(16.0) 458959(47.1)

4  54(1.4) 411(2.5) 4523(4.8) 49727(9.2)

5 53(1.0) 346(1.2) 3119(1.5) 28132(1.8)
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Table 12: DG solutions on unstructured meshes. ComputingsiT®* for a specified level of erras in Hy, of the PNDG triangular solution with
a givenp and time ratios (given schemes relative to the PNDG schentieamgles for thaip). A code [mn] denotes the DG scheme preceding it.

T2 of [mn] / T&* of [m1]

DG bases & mesh p=1 p=2 p=3 p=4 p=5
£=2.0e-04 £=1.0e-06 &£=1.0e-07 &=1.0e-08 &=1.0e-09
NDG tri [m1] 6964 36165 20509 13857 13496
NDG quad [m2] 0.75 0.80 0.93 1.10 1.29
NDG mixed [m3] 0.83 1.00 0.93 1.08 1.16
PNDG tri [m4] 0.81 0.76 0.74 0.77 0.78
PNDG quad [m5] 0.54 0.99 0.77 0.77 0.84
PNDG mixed [m6] 0.62 1.13 1.59 1.45 1.90
PNDG ngod [m7] 0.66 121 1.05 1.08 2.08

aPolygon elements withyay = 1.

to the PNDG scheme on triangles). It is noticed that the PNE@isme on mixed meshes, which is the fastest scheme,
is less dicient than other schemes from a cost per accuracy perfoemaarspective. This indicates that the gain
in computing time achieved by introducing quadrilateraineénts in the PNDG scheme is not enoughfisei the
loss of accuracy. The NDG scheme on mixed elements exhipfioaimately the same cost performance as the
NDG scheme on triangular elements for the ranges of intatjpol orderp tested. The NDG scheme on quadrilateral
meshes, which yields the most accurate solution, perfoligitly better than the NDG schemes on triangular meshes
for p < 3. Note that, on the same mesh resolution, the wall clockdiaf¢he quadrilateral NDG scheme are higher
than that of the triangular DG scheme fa2; for p =1, the quadrilateral NDG scheme runs slightly faster than th
triangular NDG scheme (this behavior reflects the fact tfuatthe considered mesh setting, the total DOFs of the
quadrilateral NDG solution is higher than that of the trialag DG solution forp > 2). This suggests that the element
size transition play a role in obtaining a full benefit of teasor-product quadrilateral elements. It can be seen from
Table 12 that the PNDG scheme on triangles exhibits high&rper-accuracy performance than the NDG scheme on
triangles. This stems, however, from the fact that the RKi###AB integrator employ larger values t&f for the PNDG
solution on triangles, thus resulting in faster runtimed higher performance. We note that the PNDG scheme and
NDG scheme on triangles show similar performance when ubie@GSPRK4 time integrator with the time step size
being selected based on the CFL-type condition.

As indicated by the ‘numerical results reported above antiénprevious section, we note that the high order
schemes fer significant benefits in terms of cost per accuracy. Althoihg considered choices of DG polynomial
bases and element shapes have an implication on the nuhypeitarmance, their impact are not as noticeable in
comparison to the use of a high-order scheme.

4.3. Nonlinear Stommel problem

\We note that realistic scenarios of coastal flow problemallysinvolve a number of factors.g, spatially varying
bathymetry, curved boundaries, bottom friction, surfadednstress. In this section, we apply the DG schemes to
the nonlinear Stommel problem. Although it is relativelgnpie, the Stommel problem contains a number of phys-
ical processes encountered in the realistic applicaticBWE and serves as a good prototype for ocean circulation
problems.

The so-called nonlinear Stommel problem [7, 36] modifiesSt@mmel problem [37] by including the nonlinear
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advective term. More precisely, we consider the flow probdeverned by the SWE (1) in a rectangular ocean basin
of [0, L]? with source terms that include Coriolis force, surface wstréss, and linear bottom frictione.,

Fo=fvH+ =X —yuH, Fy=—fuH+— - yH (41)
Po Lo

wheref denotes the Coriolis parametersy 7sy) represents the surface wind strgssijs the water density, and-the
constanty is the bottom friction coficient. The Coriolis parameter is taken &y) = fp + B(y — L/2) and the wind
stress as
Q’) 7oy = 0. (42)
L
Note that (42) is a simple form of the surface stress assatiaith the Trades and Westerlies [37]. At the basin

boundaries, we consider the no-normal boundary condition

Tsx = —T0 COS(

u-n=0. (43)

The no-normal flow condition is imposed weakly using an impdatation given in Appendix Appendix C.

In the numerical simulations, the values of parameterssfell@ws: L = 10°, z, = 1000 m,fy = 104,38 = 107!
1/m, g = 10 mys?, po = 1000 kgm?®, 7o = 0.2 N/m?, andy = 2 x 106 (except for the value of, these parameters are
identical with those employed in [36]). The steady statecislared when the fierence between the solution at time
levelt = (n+ 1)6¢ and att = nd¢ are suficiently small, more specifically,

IH(X, (n+ 1)8¢) = H(X, n6¢)llw < €5, NeEN. (44)

Here, the condition above is checked evéry= 7200.s and unless otherwise indicatgd= 5 x 10°6. The numerical
calculations are initiated with quiescent flow

H%0) =z, (UH)(x,0)= 0. (45)

Here, the Stommel problems with a‘flat and non-flat bathyneeteyconsidered. Results for the test problem with flat
bathymetry are presented in the following subsection. misntly, in subsection 4.3.2, we report numerical results
for the non-flat bathymetry problem. We also discuss in stiime4.3.2 issues concerning a preserving-still-water
property (also known as the well-balanced property) of tleed@hemes for a problem with non-flat bathymetry.

4.3.1. Flat bathymetry problem

For the flat bed problem, we consider the ocean basin withteybetric deptte, = z,0 = 1000 m. We examine
the numerical performance of the NDG scheme on rectangtksratriangles. For brevity, we present only the results
from the NDG scheme on rectangles. We consider five seqllgmééined meshes of uniform rectangular elements;
the coarsest mesh consists ok B rectanglesAx = Ay = L/5) and the finest mesh consists of 8@0 rectangles
(Ax-= Ay = L/80). We conduct the study for the NDG scheme witk: 1, 2, and 3. The values of( ;) in the
RKF45 time integrator are set to.6& 107, 1x107°). Itis noted that the time-independent linear Stommel [gnokhas
an exact solution (see [37, 7, 36]). However, there is notes@ation to the nonlinear Stommel problem. To measure
errors in the numerical solutions, we use the approximdtgiea obtained from a high-resolution calculation, more
precisely, from the DG scheme wifh= 7 on the 10x 10 rectangular mesh ang,(s,) = (1x 107,1x 1071, as a
reference solution.

Figure 11 plots the free surface elevatioa H -z, (left column) and the velocity magnitudlg = Vu? + V2 (right
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column) at steady state. The result shown in Figure 11(ahtaimed from the scheme wiih= 1 (bi-linear element)

on the mesh of 2& 20 rectangles and in Figure 11(b) from a scheme ith 2 (bi-quadratic element) on a mesh
of 10 x 10 rectangles. It can be observed that the results from thessimulations qualitatively agree well with the
reference solution shown in Figure 12. Note that, for mokiutations, the steady state is reached at approximately
t = 84.8 days (we intentionally use a larger value of the bottontibitcodficienty than that used in [7, 36] so that the
steady state is reached at an earlier time). Figure 13 miota,log-log scale, errors in the approximate solutipn

(a) Steady state solutiop,= 1, 20x 20 rectangular elements
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Figure 11: The free surface elevatior= H -z, (left) and the velocity magnitude| = Vu? + V2 (right) at the steady state of the nonlinear Stommel
problem obtained from the nodal DG scheme on rectanglesSdlation from usingp = 1 on the mesh of 2& 20 rectangles; (b) solution from
usingp = 2 on the mesh of 18 10 rectangles.

and (H)n through thel, norm against the element sizes. In the plots, the elemess siez measured througfiNe
and the values of errors are normalized||@y||,. A slope of each log-log plot, which indicates an overall ruival
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Figure 12: Reference solution of the nonlinear Stommel lerab The free surface elevatioh = H =z, (left) and the velocity magnitude

[ul = VU2 + V2 (right).

order of convergence, is reported to the right of the subiguForp > 1, the numerical solution exhibits an order of
convergence typically close o+ 1/2 in theL,-norm.

Figure 14 shows, on a log-log scale, computing times plaigainsth~ «~ /Ng. On a given mesh, computing
times increase with the interpolation ordgeras expected. It can be noticed that the log-log plots apgeatraight
lines; this implies that the computing time behaves appnakély likech® with respect to element size. The numerical
rates is approximately-3 and appears to be independenipdithe constant, as expected, depends ph Figure
15 depicts, on a log-log scale, the normalizederror inHy, as a function of computing time. Each curve shows a
relation between the computing cost and accuracy of the D@iso with a given ordemp. Since the log-log plots
appear approximately as straight lines, the cost functiansherefore be well approximated By = c,(En)* (with
s, ~ —3/(p+ 1)). More precisely, the cost functions for the total wat@umn heightH are as follows

(-10.18,-1.40), for p=1
Te =C(En)*, with (logcy, s) =4 (-9.60,-1.05), for p=2 (46)
(-7.68,-0.84), for p=3

where&y represents the error iHy, in the L, norm normalized byiz)|,. In Table 13, we tabulate from (46) the
computing times for dferent error levels. The value inside a parenthesis is a batiween the cost of the scheme
with p — 1 to that ofp. It can be seen that the high order scheme shows a clear ageamier the scheme with= 1
from the cost per accuracy aspect. For instance, at the lexairof 1x 1077 or 5x 107/, the computational cost in
the DG solution withp = 3 is about three orders of magnitude lower than the DG salutith p = 1. All these
convergence and cost per accuracy analyses show similavibekto the manufactured solution problem presented in
Section 4.2.

We also report in Table 13 the data that comes from the costifurs of the NDG solution on triangles (the
triangular meshes considered are built in a way similarésétdescribed in Section 4.2i.&,,by bisecting rectangular
elements of the rectangular elements). It can be obseratdhh scheme on rectangles has lower costs per accuracy
(ranging approximately from.2 to 25 times lower) than the NDG solution on triangles. We noteiivaerical order
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Figure 13: Error and convergence rate in the approximatatienl at steady state for the nonlinear Stommel problem.T(e) normalized.,-
error in the total water columiiH,et — Hpll2/l1oll2 as a function oh™ « +/Ng;; (b) The normalized_ error in thex-directed water discharge
l(UH)ret — (UH)nll2/lIzollz as a function oh™* = VNei.

Table 13: Nonlinear Stommel problem. Computing tiffgrequired to achieve a specified level of errorHp of the nodal DG solution on
rectangles and on triangles. A numeric value in the parsigligthe ratio between¢ of a scheme witlp — 1 and that ofp.

Computing timeT? = T,(g)

Scheme p
& =1e-06 & =1e-07 & =5e-08 & =2.5e-09
1 8903.63 221114.35 581525.45 37981329.79
NDGquad 2 133.72(66.58) 1497.62(147.64) 3099.16(187.64) 71&262B.79)
3 49.08(2.72) 337.61(4.44) 603.31(5.14) 7416.56(9.68)
1 17228.01 462327.69 1244617.57 89915965.39
NDG Tri 2 402.83(42.77) 3673.19(125.87) 7145.11(174.19) 12@B§B09.48)
3 88.55(4.55) 530.26(6.93) 908.80(7.86) 9326.77(13.59)
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Figure 15: Nonlinear Stommel problem: ertibtet — Hnll2/l|zll2 @s a function of the wall clock time.

of convergence iH_of the NDG scheme on triangles is slightly higher than thathef scheme on rectangles (the
opposite of the convergence rateuhl andvH); on the same so-called mesh resolution, the scheme omgdesas
faster than the scheme on triangles forpadlonsidered.

4.3.2. Non-flat bed Problem
4.3.2.1. Preserving still water flonOne concern of DG or other methods that are based on the eatigerform of
shallow water equations involves their ability to presaheastate at rest solution

ux)=0 and ¢ =H(x)-2z(x)=C, 47
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where/ denotes the surface elevation aBds a constant value, in the time marching process. Note thgiaal
problem that admits (47) as a solution is flow in an enclosethtia the absence of wind forcing term. Schemes that
preserve such the statee. ¢, remains constant ang, remains zero at all time, are called a well-balanced scheme
[16, 17]. To obtain a well-balanced property, numericaksoks are devised so that the right-hand-side terms vanish
for a given approximate solution of the state at rest satutio

Here, we provide a treatment for obtaining the well-balangperty in the scheme using the nodal basis and
conforming mesh and order (although not discussed here,oteethat this treatment is also directly applicable to
some modal-based DG schemes). The approximate solutionssisd below, unless specified, is associated with the
steady state at rest solution (47). We also assume herehthatthymetryz, is continuous. In this treatment, the
bathymetry is replaced by an interpolant of degree idehtaashe nodal basis considered. More precisely, when
employing the nodal basis of degrpgthe bathymetry in the elemeNtis approximated by the interpolant of degree
p, namely,

Mp
2(3) = 2 = (120) = ) Zo(Xm)dm(X), (48)
m=1

where, as a remindep,, denotes nodal basis functions, the location of nodal points, arld,, denotes the number
of nodal points. Adopting (48) leads té, — z,, = C for all x € K (as a remindery, is the interpolant and in
this caseH = C — 2). For continuoug,, the approximate bathymetnyy, iS piecewise continuous; this results in a
single-valuedHn on the element interfaces. Substituting the approximadtgisa o = (Hn, (UH)n = 0) andz,;, into
the DG-SWE weak formula yields the following right hand sidem

0

1 Zavh azh,b

5 f nvhds+nghthdx ’ (49)
oK

5 f 3 nvhds+nghvh—ydx

oK

i
255

for all vy, € PP(K), Where’F\;n = (1/2)gHﬁnX andE;.n = (1/2)gHﬁny are the normal numerical fluxes for tkxe
andy- momentum equations evaluatedgit respectively. It can be verified by integrating by-parts tinst term

of (49) and usingH, =.C = z,;, that the right hand side termvanishes, thus yielding a well-balanced property.
Note that it is assumed here that the bathymetry has no discity. We refer to approaches in [18, 20, 11] for
handling the discontinuous bed. Note that the approachesetdkin [18] and [20] use thk,-projection onPP(K) to
approximate the bathymetry in each element. Generally,résults in a discontinuous approximate bed. The well-
balanced property in these approaches are accomplistmeytinthe modified numerical fluxes that are based on the
hydrostatic reconstruction technique [17].

Note that, the integral formula (49) must be computed exatih numerical realization to obtain the well balance
property. For triangular elements (tensor product redeartements), this can be done by using quadrature rules
that integrate exactly the polynomials of degrge-31 (3p) for the volume integral terms an¢33p) for the edge
integrals (note that the values in the parentheses areddetisor-product rectangular elements). It can be checked
that the nodal-integration procedure described in se&ibmoes not meet this requirement, thus rendering the NDG
scheme non well-balanced (see numerical results belowjind/éhat one can reduce the order of quadrature required
in the numerical implementation, which implies less comaiohal work, by considering the widely-used equivalent

38



O©CoO~NOOOTA~AWNPE

alternative form of the SWEs [3, 5], more precisely, consitg(1) with

{ uH VH
q=|uH|, f= u2H+%g(H2—z§),g= uvH .
vH uvH V2H + :—Lg(HZ—zg)
? (50)
0

0
and s= g{a—z:(’ + Fx

0z,
g,(a_y +Fy

wherel = H — z, denotes the surface elevation. It can be shown that, withaheérnative form of the SWE, the
associated DG weak formula with the approximate bathyn{é&y,u, = 0, ¢, = C, and (—Iﬁ—ﬁ,b) = C(Hnh+znp) can
be computed exactly by using the quadrature rules thatriategxactly polynomials of degree up tp 2 1 (2p) for
the volume integrals and up t@Z2p) for the edge integrals when the triangular elements arsidered (the values
in the parentheses are for the tensor-product rectangelaeats). In other words, the quadratures of such accwracie
are stficient in order to achieve the well-balanced property. Nbé& the quadratures required are less accurate than
those required in the formula associated with the SWE for(2)ofin addition, it can be verified that the NDG scheme
with the nodal-integration approach is well-balanced wi) is considered.

To examine the well-balanced property, we consider a rgcian enclosed basin of [0]%, L = 1P, with the

bathymetry
_3%o  Zho V2 L
=3t ta”“[m (-x+y- 3)}’ G

wherez, o = 1000 and the state at rest as the initial condition
(X t=0)=H(x,t=0)-2z(x) =, uH=0. (52)

wherely = 1/4. In this study, we include the Coriolis force and a lineattdm friction term; surface wind stress is
excluded. The values of the physical parameters are idggmtichose listed in Section 4.3.

Below, we report the results obtained by utilizing threffedient ways in realizing the integrals in the DG weak
formula based on the nodal basis expansion on triangularegits. The first approach (M1) considered is the NDG
scheme. This scheme, as a reminder, uses the nodal-indegagiproach for realizing the integration terms (see
section 3.1). The second and third approaches use the quidfarmula in evaluating the integrals. In the second
approach (M2), the area integrals are computed by means oédrature rule that integrates exactly polynomials
of degree up to @ and the edge integrals are evaluated by a quadrature rulentbgrates exactly polynomials of
degree upto g + 1. The third approach (M3) employs quadrature rules thagirte polynomials of degree up to
3p — 1 for an area integration and up t@ %or an edge integration. Note that, in the M2 and M3 approscive
use the cubature rules provided in [38] for the area intemraiver a triangle and use the classical one-dimensional
Gauss quadrature rule for the edge integration. For brebigySWESs with (2) is termed thé-form SWE and the
SWE with (50) the’-form SWE. The numerical solutions are computed on a tranggsh consisting of 800 elements
constructed by bisecting a uniform grid of 2020 points. We use the RKF45 time integrator with the toleeanc
g = 5x 107,65 = 5x 1012 The calculations are performed urtti= 10 days (86400 s) is reached. Table 14
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tabulates the absolute maximum errors at the nodes in thliewater columrH;, and thex-directed dischargeuf)y,
att = 10 days. It can be clearly observed from this table that, énHkorm SWEs, the M3 approach exhibits the

Table 14: Well-balanced test. Absolute maximum errorsantbdes irH, and (H), att = 10 days.

0 [IH — Hylli o luH = uHh|l
M1 M2 M3 M1 M2 M3

1 1.137e-13 2.274e-13  2.274e-13 3.75%¢e-11 1.263e-10 d-PB3
£-form 2 2.274e-13 3.411e-13 3.411e-13 4.104e-10 5.713e-10 &.B49
) 3  4.548e-13 5.684e-13  7.958e-13 3.175e-09 5.500e-09 d-050

4 7.958e-13 2.274e-12 1.251e-12 8.579e-09 1.914e-08 084

1 3.410e00 1.211e-11 1.211e-11 2.8097 1.568e-08 1.568e-08
H-form 2 9.386e-02 9.997e-04 7.969e-11 2.4008 2.884e-01 - 2.269e-07

3  3.359e-03 1.984e-05 4.940e-10 9.260e-01 1.789e-02° &85

4 1.678e-04 2.104e-06 6.096e-10 6.978e-02 1.784e-03 &0303

M1 - NDG scheme; M2 - nodal basis, quadrature rulgsZ@ + 1);

M3 - nodal basis, quadrature rulegx3 1, 3p)

well-balanced property; the NDG scheme (M1) is not wellabaked and in fact it yields poor results especially for
low orderp. For the/-form SWEs, all three approaches exhibit the well-balaqregderty of the state at rest solution.

This indicates that the well-balanced property can be nbthwith less computationally expensive realizations é th
/-form SWEs. These observations on the numerical resulifytee discussion above on the well-balanced issues.

4.3.2.2. Stommel problem with linear bed/e consider a problem described in Section 4.3 with a lina#mbnetric

profile

Zh0 1
= — 1_Z(_X+(y_|—)) (53)

wherez, o = 1000. Note that the deepestand shallowest points of tha besit the southeast and northwest corners,
respectively. In the calculations, we use identical mesimesparameters employed in the flat bathymetry test case
(see Section 4.3.1). Thieform of SWE is considered in the study below and, unlessratise indicated, we note that
results reported below are of this SWE form.

We first examine whether the approximate solutions evolubécsteady state at rest when thfEeet of surface
wind stress is removed after a certain time. Here, we conligéecase where the surface wind stress is given by

Tsx = —% tanh(t ;_rTS) COS(F%), 7ey=0, Ts=8days T, = 0.5days (54)
The dfect of the wind forcing term begins subsiding around 7.5 days and is completely absent for latgélhe
integration is started with the initial condition (52) areddarried out until reaching steady statetot 150 days,
whichever comes first. The steady state is declared basedueariteria (44) withes = 10°8. We use the triangular
mesh of 200 elements, which is built from the 2@0 uniform grid, in the calculation. Table 15 tabulates dlitgo
maximum values at the nodes in the steady state solutiondsdng diferent realizations of the nodal-basis based DG
scheme (see the previous section for the description oftipéeimentation). We note that all three approaches yield
steady state solutions approximately at128 days. The result demonstrates that the less expenalizate®ons (M1
and M2 approaches) do not deteriorate the quality of theisalthat evolves to the steady state at rest solution.
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Table 15: Nonlinear Stommel problem with linear bed and @&4#face wind stress. Absolute maximum at the nodes of sudéavation and
x-directed discharge at steady state.

o (1Znll1 o [luHhlh e

M1 M2 M3 M1 M2 M3
1 7.517e-08 7.394e-08 7.394e-08 5.121e-06 4.643e-06 &-@30
2 7.885e-08 7.474e-08 7.475e-08 6.841e-06 6.858e-06 &B58
3 8.001e-08 7.579e-08 7.579e-08 7.363e-06 7.357e-06 €&-36567
7 7.964e-07 7.560e-08 7.560e-08 7.809e-06 7.792e-06 &-003

M1 - NDG scheme; M2 - nodal basis, quadrature rulgsZ@ + 1);

M3 - nodal basis, quadrature rule(3 1, 3p)

Subsequently, we consider the problem with the persistefase wind stress (42) and consider thiorm SWE.
Here, we focus mainly on examining numerical performanad@NDG scheme (M1 scheme). Figure 16 illustrates
the approximate solutioty, and (H)y, at steady state obtained using the rectangular elemergsresi 16(a) shows
the solution using = 1 on the mesh of 8& 80 elements and Figure 16(b) the solution uging 8 on the mesh of
10x 10 elements. Note that the steady state is declared whemitbgac(44) withes = 1078 is satisfied. It can be
seen that, a center of circulation is near the southwesecafthe basin and water piles up in the vicinity of such a
circulation center. The steady state is reached at appedglyt = 103 days for most calculations. Note that, in the
calculations on coarse triangular meshes and pigb > 7), the NDG scheme fails to yield a steady state solution.
We believe this is due to aliasing errors. Applying a mildctpa filter [25] appears to resolve this instability issue.
Note that we do not see such an instability issue in the M2 aBdipproaches which utilize the quadrature rules in
realizing the DG weak formula.

In assessing the numerical performance, the calculatimsaaried out untit = 12 days and unless otherwise
indicated numerical results discussed below are the eeatithis specific time. The toleraneg,(e,) in the RKF45
time integrator are set to &x 10°, 1 x 10°% in the calculations. As done in the flat-bathymetry case use the
approximate solution from a high-resolution calculatieneareference solution. More specifically, the approximate
solution from the NDG scheme with = 7 on the 10x 10 rectangular mesh ané,(s,) = (1 x 107,11 x 10719
is used as the reference solution for assessing numeridakpance. For brevity, we present, unless specified, the
results from the NDG scheme on triangles. Figure 17 plotsa tog-log scale, errors ith, and (H) through the
L,-norm against the element sizes measured/B. Note that the values of errors in these plots are normaliged
lIz]l2. Overall numerical orders of convergence are reporteddnahles to the right of each subfigures. We note that
the numerical solution converges at the rate closp #01/2. Figure 18 plots, on a log-log scale, wall-clock times
as a function'oh™ = +/Ng. The value of overall slope of each curve, which appears tmtbependent o, is
approximately 3. Figure 19 shows the log-log plots of themalizedL, errors in{}, against the wall clock times. The
plots appear approximately as straight lines in the logskmje; this indicates that the relation between the comguti
cost and the accuracy can be approximately describéld byc,(En)%, with s, ~ —=3/(p + 1/2). More precisely, the
cost functions for a given level of accurag€y in the surface elevatioy are approximately as follows

(-12.36,-1.54), for p=1
Te=c2(E)%,  with (logcp. s) ={ (-10.18 -1.12), for p=2 . (55)
(-8.09,-0.90), for p=3
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(a) p =1, 80x 80 rectangular mesh
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(a) p = 8 on 10 rectangular mesh
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Figure 16: The free surface elevatior= H -z, (left) and the velocity magnitude| = Vu? + 2 (right) at the steady state of the nonlinear Stommel
problem with linear bathymetry obtained from the NDG schefag Solution from using = 1 on the mesh of 8& 80 rectangular elements; (b)
solution from usingp = 8/on the mesh of 1& 10 rectangular elements.

Table 16 tabulates from the cost functions the computinggifor achieving dferent levels of accuracy. In addition,
weinclude in this table data from the cost functions of theGN§&heme on rectangles. The value inside a parenthesis
is @ cost ratio of the scheme wifh— 1 to the scheme witlp for the same given level of error. It can be observed
that the high order schemes outperform the schemepvittl in terms of cost to achieve a specific level of accuracy.
To achieve the same level of accuracy, the costs of the DGisolwith p = 3 are almost two to three order of
magnitude lower than the linear DG solution. Data in thiddatso indicate that the NDG solution on rectangles has
higher performance (ranging approximately betweghtd 3 times) than the NDG solution on triangles. The gain
from employing rectangular elements is minor in comparisathe gain from using the high order schemes. We note
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(a) Accuracy inty

F
|
8 p | Convergence rate iHp
5 1 1.95
'Té 2 2.74
2 3 3.17
10 12 10°
Nel
(b) Accuracy in (1H)x,
107
r©
=}
|
§§ 164 p | Convergence rate irud)y
g 1 1.51
-Tg 2 2.24
g 3 3.10
10°

10! 1 10°
N
el

Figure 17: Nonlinear Stommel problem with linear bathymelog-log plots of errors at = 12 days in thd_,-norm normalized byjzy||> versus
h™1 « y/Ng. (a) Errors in the surface elevation. (b) Errors in ¥adirected water discharge.

Table 16: Nonlinear Stommel problem with linear bed: cormmutime T¢ required to achieve a specified level of erroHp of the nodal DG
solution on rectangles and on triangles. A numeric valudénpiarenthesis is the ratio betweEhof a scheme witlp — 1 and that ofp.

Computing timeT¢ = T¢(g)

Scheme p
& =1e-06 & =1e-07 & =5e-08 & =2.5e-09
1 2510.45 99096.31 299635.78 35763219.21
NDGquad 2 112.89(22.24) 1630.82(60.76)  3643.57(82.24) 11759908111)
3 50.40(2.24) 430.14(3.79) 820.21(4.44) 13348.67(8.81)
1 7692.93 268412.10 781995.33 79490736.19
NDG Tri 2 190.71(40.34) 2497.78(107.46) 5418.23(144.33) 1539%516.39)
3 77.64(2.46) 618.55(4.04) 1155.28(4.69) 17189.70(8.96)
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Figure 18: Nonlinear Stommel problem with linear bathymyretwall clock time as a function di~t « +/Ng.
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Figure 19: Nonlinear Stommel problem with linear bathymiearror||Z;et — Zhll2/1120ll2 @s a function of the wall clock time.

that the characteristics of the DG solution in terms of cogeace and cost per accuracy are similar to those observed
in the manufactured solution test case (Section 4.2) anfiatibed Stommel test problem (Section 4.3.1).

5. Conclusions

In this work, we present a comprehensive performance asses0f LLF-flux nodal discontinuous Galerkin
(NDG) and polymorphic nodal discontinuous Galerkin (PNBGlution of the time-dependent nonlinear SWE. The
integration in time is carried out using the RKF45 time imgggr, which has a mechanism to adjagtto control
temporal errors. These methods are applied to a set of pnshAéth suficiently smooth solutions: a manufactured-
solution problem and the nonlinear Stommel problem with #ad non-flat bathymetry.

44



O©CoO~NOOOTA~AWNPE

The numerical solutions show that all the schemes testeihieahconvergence rate of order betwed(hP) and
O(hP*1), typically close top + 1/2, for the water column height. The performance analyseslglshow that the
high-order scheme(> 1) outperform the linear-element scheme in terms of cosapeuracy performance. For a
specified level of error, the computational cost requirectel@ses noticeably as the degpeef the DG polynomial
increases. In the test problems employed here, for a madspatified level of error, the computational cost for the
schemes withp = 3 are typically about two to four orders of magnitude, in otiwerds a hundred to ten thousand
times, lower than the scheme with= 1. The benefit gained by employing a one-higher order intargdowever
diminishes as the interpolation ordelincreases. We find that the use of cubic or bi-cubic intemuslé = 3), is
particularly appealing due to dramatic improvement in esstompared to (bi-)linear interpolants and moderate gain
over (bi-)quadratic interpolants.

In addition, we examine whether element shapes other tiemgtes, in particular quadrilaterals; which reduce
the number of elements in the computational mesh would ingotioe éficiency of DG solutions. Here, we consider
a mesh setting in which computational meshes of variousesiéishapes are derived from a given triangular mesh.
The numerical results provide evidence that there may banafibén using quadrilateral elements, especially, those
with nodal tensor-product bases. In the numerical exparimmeonducted, the NDG scheme on rectangles exhibits
higher (or at worst comparable to) cost-per-accuracy perdoce as compared to other schemes. We believe that
this promising performance stems primarily from two reasdfirst, quadrilateral meshes contains fewer elements.
Second, the tensor-product elements impp@tain the accuracy level owing to the tensor-product bapasning
additional cross polynomial terms for a given degpeé/Ne note that the performance benefit of the tensor-product
schemes is however relatively minor in comparison to usigg brder elements.

A treatment of the bed term that leads to a well-balancedmseheas been also discussed. Such a treatment is
based on replacing the bathymetry with an interpolant oftimee degree with the DG interpolant and exact realization
of the DG weak formula at the still water state. The latteuresment renders the schemes, which uses the so-called
nodal integration approach in evaluating the integral &ermon well-balanced when the standard SWE form (2) is
considered. We find that when employing instead the equivdlequently-used form of SWE (50), the well-balanced
property can be achieved with less expensive realizatidmigue, including the NDG scheme.

In this work, we use a manufactured-solution problem witie-tike solution and wind-driven circulation prob-
lems. Numerical evidence shown here suggests that therggaificant cost performance benefit achieved by using
the high-order DG method forithese types of problems. A sindbnclusion can be expected in general for smooth-
solution problems, since in these cases, high-order acgw@lutions can be expected when using the high-order
DG methods. We note that the cost performance benefit is efsted in high-order solutions to the Navier-Stokes
equations with smooth solutions [39]. Although a problerthvei curvilinear domain is not examined here, it is noted
that, as demonstrated in our work [40], a proper treatmenpeformal flow on solid curved walls is crucial for an
accurate DG solution to the SWE, including a linear-elendsat Performance studies for problems that contain more
challenging features such as wetffdiying fronts, derivative discontinuities, and (inviscathocks are a subject of our
future studies. Without going into detail, we note that hatie features mentioned, high-order methods will not yield
high-order accuracy solutions in a global sense using fixgtlsplutions. In areas away from these features where
the solution is smooth, good convergence can still be erggmtovided that mechanisms that are in place to handle
possible numerical artifacts that may be induced by thesteifes preserve accuracy in the smooth-solution areas.
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Appendix A. Evaluation of the stiffness matrix

In this section, we describe an approach used in evaludisgtifness matrices defined in section 3.1. Consider

the stifness matrix associated with tikedirected flux,.e.

ob . |
Sy = (Sxp): Sxiip = fai:('qudx, i=1...Mp j=1....M, (A1)
K

To compute such a matrix, the partial derivativeppivith respect tox is written in the nodal representation, more
precisely

0o e
8_xl = ; Dy (n,iy¢n(X)

where

0
Dt = 55

Xi

denotes an entry of the so-called derivative mabix Substituting and manipulating yield the following result
Sx=DiM (A.2)

whereM is a mass matrix (with respect to the nodal basis functioehdd and evaluated as follows
M= f Pp"dx = J f VH)T88 Vide = (vHTvL (A.3)
K %

whereJ = (AX)? is the Jacobian of the geometric transformation (14). Theaiging task for determining the ftiess
matrix is to find the derivative matriRy. SinceV'¢ = ¢, it follows thatVTd¢/dx = d¢/dx. The derivative matrix
can thus be determined from

D,V = Dy (A.4)

whereDy is a matrix with.the entries

9 . :
DX""”Ea_x] . i=1...,Mp j=1,...,Np
Xi

which can-be computed easily in practice. It is noted thastiffness matrix associated withdirected flux,Sy =
fK d¢/0yp" dx, can be computed in an analogous way.

Appendix B. Remarks on code implementation details

The main computing cost in the simulations involves evahgaof the right-hand-side term of the system of
ODEs (33),.e., M~r (T, t), which is required by the time integration solver for a giwslution vecto and timet.

Algorithm 1 depicts, in brief, an outline of the steps emgldyn the calculation of the right-hand-side vector. Here,
a one-dimensional array is used to store the global soluti@entries of the expansion coordinates belonging to the
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Algorithm 1 Right-hand-side (RHS) vectdd ~*r (U, t) calculation.

Given a vector of expansion coordinates {({@)T @)7 ... @Y7 @")T)T
> Ne—-the number of elements

fori = 1toNedo
> contribution from volume integration

' S () + S F(@)

> contribution from edge integration
for j = 1toN; do
> Nif-the number of edge segments of the

> U:-\El(aKi)j =0Ki, (9K)j-j*"-edge segment

i*f-element

Meri+ [ 4 F-nds
(9Ki);
end for

ri — (Mi)—lri
end for

Return RHS vector = {(r1)T (r2)T ... (rNe1)T (rNe)TyT

same element are kept in consecutive order. The right-Batedterm associated with tfi8-element is determined
within the i-iteration of a loop over the elements. It is obtained by ciminlg the contribution from the volume
integrals and edge integrals of all edge segments. As a demiim Algorithm 1,5{( (andS{,) denotes a (pre-computed)
generalized sfiness matrix; the vectors, and f'y denote, respectively, a vector of nodal coordinateg-cdndy-
directed flux (see section 3.1). An edge segment is a striigheind, for non-conforming elements, it is not the
entire edge of an element. For conforming edges and ordapamach similar to that utilized in treating a volume
integral of the nonlinear flux term is adopted for the caltataof the edge integrai.e., by writing the numerical flux
ﬁ -n as a linear combination of one-dimensional Lagrange basistions of ordep, ¢ = {¢,,(s(X)).s € [-1, 1], x €

.....

1

f %5md§} (Fr - M)(X(sim)- (B.1)
-1

= (9K);1 &5
fq&ifh-nds'z 5 mZ:l

(9K);

whereg(X) is a linear coordinate transformation mapping (0K); to ¢ € [-1, 1] and{s¢m} denotes the set of interpo-
lation nodes with the Gauss-Lobatto node distributionhddtgh all numerical results reported here are solved on the
conforming meshes and orders, we note that the computergmogsed in the numerical tests also accommodates
both non-conforming elements and non-conforming ordedssaipports dynamicalliz- and p-adaptive refinement.
For non-conforming edges afud order, the edge integrals are obtained through the useetain Gauss-quadrature.

In both cases, the integral term on an edge segment is wat@nmultiplication of the matrix of dimensiavi, x p

and the vector of dimensiom(note thatp denotes the number of points used in the integrationNpthe number of
elemental basis functions). In the calculation of the flud e numerical flux, the interpolated values of the solytion
when needed, are realized through the multiplication ofaghyeropriate Vandermonde matrix and a vector of modal
expansion coordinates of the solution.
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The computer code employed in the numerical simulationgiisem in Fortran 77 and Fortran 90. It is compiled
using the Inte? Fortran version 11.1 compiler with the optimization flag 8et03. Note that a significant portion
of computing time is spent on performing matrix-vector riplitations. We make extensive use of the Fortran Basic
Linear Algebra Subprogram (BLAS) level 2 [4DGEMV () for matrix-vector multiplications. Such a subroutine
involvesO(M x N) operations wher& andN are the dimensions of the matrix considered. Numerical edatjpns
are conducted on dual six-core 2.4 GHz AMD Opteron model kit 12 GB RAM nodes available at the Center
for Research Computing at the University of Notre Dame.

Appendix C. Implementation of no-normal flow boundary condition

To impose the no-normal flow condition (43), we use an apgrsanilar to that traditionally employed in weakly
enforcing a so-called natural boundary condition in finiengeent methods. In this approach, the numerical flux on
the no-normal flow boundary is defined as

F = F(q°) (C.1)

where the statg® = (H?, uPHP,\*H®)T is determined by setting
(UPH®).n=0, (UPH®).r=(uH)x, H =H~ (C.2)

wherert is the unit-tangential vector of the no-normal flow boundalie minus superscript is used to indicate the
value of variables on the boundary when approaching froniritegior of the element. It can be easily verified that
this setting amounts to using the following numerical fluxtioe no-normal flow boundary

- 1
F-n=(0, #°n,, Fny)T, #P°= Eg(H’)Z (C.3)

wheren, andny denote thex- andy-component of the unit normal vectoy respectively. It can be seen that (C.3) has
a vanishing value of flux for the continuity equation, thusallg enforcing (43). Note that this implementation does
not require a Riemann solver.
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1. We investigate the performance of high-order DG methods for the SWE:s.

2. We examine the performance of triangular, quadrilateral, and polygonal DG elements.
3. We discuss aspects on obtaining a well-balanced property in high-order nodal DG.

4. High-order schemes outperform linear-element schemes in the cost-per-accuracy basis.
5. A computational benefit is observed in tensor-product quadrilateral elements.





