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Abstract

We present a comprehensive assessment of nodal and hybrid modal/nodal discontinuous Galerkin (DG) finite element

solutions on a range of unstructured meshes to nonlinear shallow water flow with smooth solutions. The nodal DG

methods on triangles and a tensor-product nodal basis on quadrilaterals are considered. The hybrid modal/nodal DG

methods utilize two different synergistic polynomial bases on polygons in realizing the DG discretization; orthogonal

basis functions constructed by the Gram-Schmidt process are used as trial and test functions in a DG weak formulation;

and a nodal basis is used as an efficient means for area integration. These are implemented on triangular, quadrilateral,

and polygonal elements. In addition, we discuss aspects to be considered in order to achieve the so-called well-

balanced property that preserves steady state at rest with aspatially varying bed. The performance in terms of accuracy

and computational cost is demonstrated usingh andpconvergence studies on a nonlinear problem with a manufactured

solution and the nonlinear Stommel problem with flat and non-flat beds. To assess the performance of quadrilateral

and polygonal elements in comparison to triangular elements, we consider a setting in which a quadrilateral mesh, a

mixed triangular-quadrilateral mesh, and polygonal mesh are derived from a given triangular mesh andvice versa. The

tests conducted reveal the merit of using the quadrilateralelements in terms of computational cost per accuracy and

computing time. More importantly, the numerical results clearly show that high order schemes significantly improve

the cost performance for a given level of accuracy, with cubic or bi-cubic interpolants particularly achieving dramatic

improvements in accuracy as compared to linear and quadratic interpolants, with diminishing benefit asp > 3.

Keywords: Discontinuous Galerkin finite elements, Nodal, Modal, Triangular element, Quadrilateral element,

Polygonal element, Computational cost, Well-balanced; Shallow water equations

1. Introduction

The shallow water equations (SWE) are used extensively in modeling many important physical phenomena, such

as hurricane induced flooding, tides, riverine flows, tsunami waves, dam breaks, and many others. The equations can

be coupled with a range of transport equations to model problems such as salinity, heat, and contaminant movement.

Simulations of such environmental flow problems frequentlyinvolve large, geometrically complicated domains and
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integration over long periods of times. An accurate and efficient solution of the SWE is therefore crucial in numerical

simulations. While relatively young in comparison with more conventional approaches, discontinuous Galerkin (DG)

finite element methods (see [1, 2] for reviews of DG methods) have increasingly become a powerful alternative

for solving the SWE [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Conceptually similar to finite volume methods, DG methods

inherently have the property of being conservative on the element level, making them ideal for coupling flow and

transport models. Additional notable advantages of DG methods include the ease of constructing high order schemes

on unstructured meshes and high scalability for parallel implementation when used in conjunction with explicit time

integration schemes. Since DG methods use a discontinuous approximation, they are able to accommodate non-

conforming meshes and the use of different bases in each element, thus rendering them naturally well suited for a

discretization with adaptiveh (mesh) andp (polynomial order) refinements.

While DG methods possess a number of favorable properties, one major drawback in comparison to continuous

Galerkin (CG) methods on a given mesh is the larger number of degrees of freedom, which consequently translates

into greater computational costs. The preliminary comparison study in [13] of CG and DG methods for the SWE

shows that, when using linear interpolation on identical meshes, the cost per time step of the DG approach on serial

machines is approximately four to five times more expensive than the CG approach. The subsequent study in [6] finds

that the DG approach is generally more efficient in terms of achieving a specified error level for a givencomputational

cost and in terms of scalability on large-scale parallel machines. Note that [13] and [6] use triangular meshes in their

studies.

A main objective of this work is to examine the numerical performance of high-order DG schemes in comparison

to linear-element DG schemes for the nonlinear SWE. Here, a high-order method refers to a scheme that is formally

higher than second order. We adopt this definition since widely-used SWE solvers for environmental flow applications

are mostly first or second order accurate. Note that, in a DG context, such a scheme is devised by using a local

expansion polynomial of degree greater than unity,i.e., p > 1. In particular, we examine the numerical performance

of two DG schemes: a nodal DG scheme [14] and hybrid modal/nodal DG scheme [15]. These two schemes use

different variants of polynomial bases (hence their namesake) in the approximation. The nodal DG scheme is based

on a Lagrange polynomial basis. The Lagrange polynomial basis functions possess an interpolation property,i.e.,their

value is unity at their associated nodes and vanishes at other nodes. The nodal DG scheme takes advantage of this

property in constructing an efficient quadrature free approach for evaluating integral terms appearing in the DG weak

formulation. The hybrid modal/nodal scheme, devised by [15] is based on a pair of the so-called polymorphic nodal

bases on a polygon which consists of an orthogonal modal basis and its nodal basis counterpart. The former is utilized

in realizing the DG discretization and the latter is employed in evaluating integral terms. We assess the performance

of these DG schemes, in terms of accuracy, computational time, and computational cost per accuracy, through their

application to test problems. Note that, in this work, we limit our test problems to those with sufficiently smooth

solutions on a large simple domain. Generally, problems with smooth solutions permit high-order schemes to perform

at their best. Although they do present fewer numerical challenges, smooth-solution problems are in fact frequently

encountered in a large class of environmental flow applications that includes tides, hurricanes, non-breaking waves,

and many others.

This work is also motivated in part by an observation that a quadrilateral element may be obtained by merging

two adjacent triangular elements andvice versa, two triangular elements formed by bisecting a quadrilateral element.

In this mesh setting, a mesh of quadrilateral elements wouldconsist of approximately half as many elements as a

mesh of triangular elements. The number of edges in the quadrilateral mesh would be approximately two-thirds that

of the triangular mesh. Since evaluating area integrals andedge integrals represents the major computational cost in

DG methods, the use of quadrilateral elements would appear to be an appealing means to improve the computational
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efficiency of DG schemes. To gain more insight into this idea, we examine the performance of DG solutions with

expansion basis functions defined for various element shapes. More specifically, for the nodal DG methods, we

consider the Lagrange nodal bases on triangles and tensor-product nodal bases on quadrilaterals. For the hybrid

modal/nodal DG methods, we consider not only the DG solutions of polymorphic bases on triangular and quadrilateral

elements but also polygonal elements.

One issue that arises in DG schemes and other methods based onthe SWE in conservative form concerns their

ability to preserve steady state at rest in a problem with a spatially varying bed, the well-balanced property [16, 17].

A straightforward treatment of the bed term may not balance exactly (at the computational level) the gradient flux

term and the bed term and thus may lead to a failure in maintaining the steady state at rest. It is demonstrated in [17]

that the well-balanced property generally yields a more accurate solver. In a DG framework, several well-balanced

schemes have been devised, seee.g. [18, 19, 20, 21, 11, 9] and references therein. In this work, we discuss treatment

and realization aspects to be considered in order to achievea well-balanced property in high-order DG scheme based

on nodal bases.

This paper is organized as follows. In Section 2, we provide adescription of the two-dimensional nonlinear SWE.

Section 3 summarizes a general framework of the DG method employed in this work. Subsequently, we describe two

different bases to use with the DG method, namely, the so-called polymorphic nodal bases and the nodal bases. In

Section 4, we present a performance assessment of the hybridmodal/nodal DG schemes and the nodal DG scheme

through two test problems: a nonlinear problem with a smoothmanufactured solution and the nonlinear Stommel

problem. Since the manufactured-solution problem has an exact solution, it permits an accurate measure of the

error. We therefore use this problem in a comprehensive performance study (Section 4.2). In Section 4.3, we report

numerical results of the nodal DG solution to the nonlinear Stommel problem with a flat bed as well as a non-flat bed.

The non-flat bed test case is also employed in the study of the well-balanced property. Although it has a relatively

simple structure, the nonlinear Stommel problem contains all the terms present in realistic applications, including the

Coriolis force, surface wind stress, and bottom friction. Conclusions from the study are drawn in Section 5.

2. Governing equations: Shallow Water Equations

We consider the two-dimensional nonlinear SWE which consist of the depth-averaged continuity,x-, andy- mo-

mentum equations written in conservative form as follows,

∂q
∂t
+ ∇ · F(q) = s(q, x, t) (1)

3
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where the vector of the conserved variablesq, the shallow water fluxF = ( f (q), g(q)), and the vector of forcing terms

sare

q =



H

uH

vH



, f =



uH

u2H +
1
2

gH2

uvH



, g =



vH

uvH

v2H +
1
2

gH2



,

s(q, x, t) =



0

gH
∂zb

∂x
+ Fx

gH
∂zb

∂y
+ Fy



,

(2)

respectively. Here,H(x, t) denotes the total water column height,u andv represent the depth-averaged velocity in the

x- andy-directions respectively,g is the magnitude of the gravitational acceleration,zb(x) represents the bathymetric

depth measured positive downwards from a horizontal reference (see Figure 1).Fx andFy denote forcing terms in the

ζ(x,y)

(x,y)z
bζH = + z

b
g

Figure 1: Schematic diagram of the free surface and bathymetry.

momentum equations which may be presente.g., Coriolis force, bottom frictional stresses, surface stresses. Note that,

in this study, we consider the effect of momentum diffusion from turbulence negligible and the terms describing such

an effect are excluded from the equations.

3. Methodology

3.1. Discontinuous Galerkin methods for hyperbolic balance laws

We first describe a framework of the specific DG formulation employed in this study. For simplicity of presenta-

tion, we describe a DG discretization of 2-dimensional scalar hyperbolic balance laws of the form

∂u(x, t)
∂t

+ ∇ · f (u(x, t)) = s(u(x, t), x, t), (x, t) ∈ Ω × [0,∞), Ω ∈ R2, (3)

whereu(x, t) is a conserved variable,f = ( fx, fy) is a nonlinear flux withfx and fy denoting a flux function in the

x- andy-direction, respectively, and s(u, x, t) is a (non-stiff) source term. A DG discretization of the SWE (1) is a

straightforward extension of the procedure for discretizing (3). However, we note that the bed-slope term requires

additional attention in order to obtain a scheme that preserves still water (see Section 4.3.2.1 for discussion on this

issue). To discretize (3) using DG methods, the domainΩ is subdivided into a set of finite non-overlapping elements.

4
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Let Th denote such a set of elements. The solutionu is then replaced by a discontinuous approximate solutionuh

which, in each elementK ∈ Th, belongs to a finite dimensional spaceV(K). The approximate solution on the element

K is determined by requiring that,

∫

K

∂uh

∂t
vdx −

∫

K

f (uh) · ∇vdx +
∫

∂K

f̂ · nvds=
∫

K

s(uh, x, t)vdx, (4)

for all v ∈ V(K), wheren represents the outward-pointing unit normal vector. The so-called numerical flux̂f , also

known as the Riemann solver, resolves the fluxf (uh) being multiply-defined on the element boundary arising from

the approximation being discontinuous across the element interface. The numerical flux, which depends on the traces

from both sides of the element interface, is essential for the stability, convergence, and efficiency of the DG method

(see examples of different numerical fluxes ine.g[22, 23]). Note that the coupling between the approximate solution

in K and in its immediate neighbors enters the weak formula (4) only through the edge integral term.

Suppose here that a finite dimensional spaceV(K) (with desirable properties) is chosen for each elementK and

that {φ̃K
m(x)}m=1,...,Np forms a basis ofV(K), whereNp denotes the dimension of the spaceV(K). The approximate

solution, when restricted toK, is then defined by

uh

∣∣∣
K
=

Np∑

m=1

ũK
m(t)φ̃K

m(x), x ∈ K, (5)

wherẽuK
m(t) represents the time-dependent expansion coordinates. The global approximate solution corresponds sim-

ply to a direct sum of (5) over all elements. By adopting this basis, the local statement (4) for the elementK reduces

to the following system of ordinary differential equations (ODEs):

Np∑

n=1

MK
m,n

d̃uK
n

dt
−

∫

K

fx(uh)
∂φ̃K

m

∂x
dx −

∫

K

fy(uh)
∂φ̃K

m

∂y
dx

+

∫

∂K

f̂ h · nφ̃K
mds=

∫

K

s(uh, x, t)φ̃K
mdx, m= 1, . . . ,Np, (6)

whereMm,n, an entry of the element mass matrix, is defined by

MK
m,n =

∫

K

φ̃K
m(x)φ̃K

n (x)dx. (7)

Note that the superscriptK is used to indicate an affiliation of the basis functions and their expansion coordinates with

the elementK. Hereafter, this superscript is dropped for notational simplicity.

The area and edge integrals are conventionally evaluated byusing a quadrature rule; for example, the area integral

involving fx(uh) is realized through
Nc∑

r=1

wc,r

(
fx(uh)

∂φ̃m

∂x

) ∣∣∣∣∣∣
xc,r

,

where (wc,i, xc,i) is a quadrature weight and point location pair andNc is the number of quadrature points. We note

that the accuracy of the quadrature to be used depends largely on the form of the integrands. In this work, we consider

a technique frequently used in spectral methods and in nodalDG methods [24, 14, 25, 15] to evaluate these integrals.

This technique relies on the so-called nodal basis, anotherbasis spanningV(K), to construct a simple but efficient

5
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means in treating the nonlinear terms. Here, let{φm ∈ V(K)}m=1,...,Mp with Mp ≥ Np be a nodal basis associated

with the interpolation points{xm ∈ K}m=1,...,Mp. The nodal basis functions possess the so-called interpolation property,

namely,

φm(xn) = δm,n =


1 for m= n

0 for m, n
. (8)

Here, we allow the number of nodal basis functionsMp to be greater than the number of trial basis functionsNp. In

the case whereMp > Np, the property (8) of the nodal basis functions holds in an approximate sense only. With the

nodal basis at hand, the nonlinear flux term is approximated as an interpolant as follows

fx(uh, x) ≈ (I fx)(x) ≡
Mp∑

m=1

fx,mφm(x) = φT f x, (9)

where f x = { fx,1, . . . , fx,Mp}T andφ = {φ1, . . . , φMp}T . The nodal representation of they-directed flux (I fy)(x) is

defined in an analogous fashion. Here, the nodal coordinatesare simply defined byfx,m = fx(uh(xm)). By adopting the

nodal representation for the nonlinear flux term and the source term, the formula (6) becomes the following system of

ODEs,

Np∑

n=1

Mm,n
d̃un

dt
−

Mp∑

n=1

(
Sx,(m,n) fx,n + Sy,(m,n) fy,n

)
+

∫

∂K

f̂ h · nφ̃mds=
Mp∑

n=1

M̃m,nsn, m= 1, . . . ,Np. (10)

where sn = s(uh(xn), xn, t), and the general element mass matrix and the general element stiffness matrices are

M̃ = (M̃m,n), M̃m,n =

∫

K

φ̃mφndx (11)

Sx = (Sx,(m,n)), Sx,(m,n) =

∫

K

∂φ̃m

∂x
φndx (12)

Sy = (Sy,(m,n)), Sy,(m,n) =

∫

K

∂φ̃m

∂y
φndx. (13)

Notice that, with these nodal representations, the volume integrals involving the nonlinear flux and the source term

reduces to matrix-vector multiplications. Note that the edge integrals can be treated in a similar fashion; see Appendix

Appendix B. The element matrices of each element can be computed exactly (or approximately) and stored at the

initial stage of the simulation, leading to a quadrature free approach [26]. This nodal-integration approach provides

a simple means to evaluating the integral terms and offers a computational advantage in the sense that the number of

operations required is proportional to the number of nodes regardless of the form of the non-linear flux and source

term. The disadvantage of this approach is that there is an error introduced through the interpolation of the nonlinear

flux and the source term. Such an error, known as an alias error, may induce an instability for marginally resolved

computations [24, 25]. In this case, an instability can still be effectively controlled by employing a de-aliasing strategy

[24, 25].

6
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Since there is no functional-continuity requirement in theexpansion coordinates belonging to different elements,

a global system of ODEs is composed simply of the system of ODEs (10) from all elements. To solve such a global

system, we invert the mass matrix (a matrix associated with the time-derivative term) and apply a time stepping

scheme to the resulting explicit system of ODEs. Since the expansion coordinates from different elements enter (10)

only through the numerical flux term, the mass matrix is a block diagonal matrix with the element mass matrices as

the diagonal block entries. The inverse of the mass matrix can thus be easily computed by inverting each element

mass matrix. Note that an inversion of the element mass matrices can be done once and for all at the initial phase of

the simulation. Note this procedure can be made trivial by choosing the local basis{φ̃m} forming an orthogonal set

since, in this case, the element mass matrix is a diagonal matrix.

The remaining tasks in defining a DG scheme concern choosing the finite dimensional approximation space, its

associated basis functions, a time discretization scheme,and a Riemann solver. The next two subsections describe

two particular sets of polynomial bases, namely the polymorphic nodal bases and the nodal bases, to be used in the

framework described above. Thereafter, we discuss in briefa time integration scheme employed in this study.

3.2. Polymorphic nodal elements: modal and nodal basis

Below, we summarize the construction of the so-called polymorphic nodal bases for a convex polygon devised by

Gassneret al. [15]. Such bases consist of an orthogonal polynomial basis to be used as a set of trial and test functions

and its associated nodal basis counterpart to be used in treating nonlinear terms.

For a given convex polygonK, we introduce a coordinate transformationξK : K → K , connecting an elementK

with a so-called reference elementK , as follows

ξ = ξK(x) =
x − xc

∆X
, x ∈ K, (14)

whereξ = (ξ, η), x = (x, y), xc denotes the centroid ofK, and∆X = max(xmax−xmin, ymax−ymin) is a scaling factor (see

Figure 2). The reference elementK is the range of the coordinate transformation. Note that thetransformation (14)

amounts simply to a rigid-body translation and linear scaling of the elementK. Let {πm}m=1,...,Np be the monomial

ξ

η

y

x

ξ (x)
K

−1

(x)ξ
K

∆Χ ∆ξ=1

K

K

cX

Figure 2: Schematic diagram of the coordinate transformation.

basis ofPp(K), the space of polynomials with degree of at mostp, namely

πm(ξ) = ξiη j , i, j ≥ 0, i + j ≤ p, (15)

m=
1
2

(i + j + 1)(i + j + 2)− i. (16)

7
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The number of basis functionsNp and the orderp are related through

Np =
(p+ 1)(p+ 2)

2
. (17)

An orthonormal basis{φ̃m(ξ)}m=1,...,Np is subsequently constructed by applying a modified Gram-Schmidt process

[27] with the usualL2 inner product to the monomial basis. Consequently, the basis functions̃φm(ξ) possess the

orthonormal property, more precisely, ∫

K

φ̃m(ξ)φ̃n(ξ)dξ = δm,n.

The basis functions on the physical elementK can then be defined as follows

φ̃m(x) = (φ̃m ◦ ξK)(x), m= 1, . . . ,Np. (18)

Here, for notational simplicity, we use an identical notation for the basis functions on physical elementK and on the

reference elementK . Since the transformation (14) is affine, the space spanned by{φ̃m(x)} is therefore a space of

polynomials with degree of at mostp. In addition,{φ̃m(x)} forms an orthogonal basis overK owing to the geometric

transformation (14) having a constant Jacobian.

For a given set of nodal pointsΩI (p) = {xm}m=1,...,Mp ⊂ K, a so-called nodal basis{φm(x)}m=1,...,Mp and it associated

coordinate{um}m=1,...,Mp are constructed from considering the following conditions, for u(x) ∈ Pp(K),

φm(xn) = δm,n, u(x) =
Np∑

m=1

ũmφ̃m(x)
.
=

Mp∑

m=1

umφm(x). (19)

As a result, the transformations between two representations are determined by

u = Vũ and φ̃ = VTφ (20)

whereu = {u1, . . . , uMp}T , ũ = {̃u1, . . . , ũNp}T , φ = {φ1, . . . , φMp}T , φ̃ = {φ̃1, . . . , φ̃Np}T andV is a generalized Vander-

monde matrix whose entries are given by

Vm,n = φ̃n(xm), m= 1, . . . ,Np, n = 1, . . . ,Mp. (21)

The remaining task in defining the nodal basis involves choosing a nodal set. The distribution of the nodal points

has a crucial implication on the quality of an interpolant. It is known that a high quality interpolant, indicated by

a small value of the Lebesgue constant [28], can be achieved with node sets having nodal points clustered in the

vicinity of the boundaries of the element. Note that the Lebesgue constant indicates how far the interpolant may

deviate from the best polynomial approximation of the function. Here, we use the specific framework devised by

Gassneret al. [15] to generate a nodal set yielding such a desirable effect. Such a nodal set consists of a set of nodes

on the element boundary and a set of nodes in the interior. Theinterior nodes are generated by nesting a set of the

scaled-down boundary nodes in a way that the nodes are densernear the boundaries. More precisely, a nodal set on a

given polygon ofNgon sides is constructed from the following formula,

ΩI (p) =
rmax⋃

r=0

Mr (ΩS
I (p− (Ngon− pd)r)) (22)

8
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with

rmax = floor

(
p

Ngon− pd

)
(23)

and 0≤ pd < Ngon. Here,ΩS
I (q) denotes a set of boundary nodes which hasq + 1 nodes with the Gauss-Lobatto

node distribution on each edge of the considered polygon andΩS
I (0) = {xc} wherexc is the centroid of the polygon.

The mappingMr generates the interior nodes by scaling down, with a certainfactor depending on the nesting stepr,

the boundary point setΩS
I . Note thatM0 is an identity mapping. See Gassneret. al. [15] for a detailed account of

the mappingMr . Figure 3 shows, as an example, a nodal set forp = 5 on a quadrilateral, triangular, and pentagonal

element. Note that the formula (22) is applicable for an arbitrary p. It uses the parameterpd to adjust the number of

interior nodes. See Figure 3(a) and (b) for a comparison of the node sets with different valuespd. Note that including

more interior points by increasing the value ofpd improves the quality of an interpolant [15], however, at theexpense

of computational efficiency in terms of the number of operations required. It is noted that the number of nodesMp, p,

(a) Mp = 24 (b) Mp = 28 (pd = 1)

 

 

M0(ΩS
I (5))

M1(ΩS
I (1))

 

 

M0(ΩS
I (5))

M1(ΩS
I (2))

(b) Mp = 21 (c) Mp = 26

Figure 3: Nodal distribution forp = 5 (Np = 21): (a) quadrilateral element withpd = 0 (b) quadrilateral element withpd = 1 (c) triangular element
with pd = 0, and (d) pentagonal elementpd = 0.

andpd are related thorough

Mp = Ngon(rmax+ 1)

{
p− 1

2
(Ngon− pd)rmax

}
+ δ0,p−(Ngon−pd)rmax. (24)

Table 1 tabulatesNp andMp of the triangular and quadrilateral polymorphic elements with p ranging from 1 to 6.

The number of nodal pointsMp from this construction is in general greater thanNp (except for a triangular element

whereMp = Np). For Mp , Np, an inverse of the Vandermonde matrix is not uniquely defined. To circumvent this

issue, a pseudo-inverse matrix defined in the least squares sense, more specifically,

V−1 ≡ V
−1

VT , V = VTV, (25)

9
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Table 1: Degrees of freedomNp and the number of nodal pointsMp per element of triangular and quadrilateral polymorphic elements.

Quad element

Degreep Tri element Mp

Mp = Np Np pd = 0 pd = 1

1 3 3 4 4

2 6 6 8 8

3 10 10 12 13

4 15 15 17 20

5 21 21 24 28

6 28 28 32 37

is utilized in defining the inverse transformations

ũ = V−1u and φ = (V−1)T φ̃. (26)

Note that forMp > Np, the set{φm} defined as above, although it spans every polynomial inPp(K), is not a basis since

it is a linearly dependent set. However, for simplicity, we still call such a set the nodal basis and its members, nodal

basis functions. As a consequence of using the pseudo-inverse Vandermonde matrix (25) in defining the nodal basis

functions, the nodal basis function is close but not identical to unity at its associated node and is close but not identical

to zero at the other nodes,i.e. φm(xn) , δm,n. Therefore, a function value at the nodal points of the polynomial

approximation of a functionf (x) defined by

(Ip f )(x) =
Mp∑

m=1

f (xm)φm(x) = φT f

is in general not identical to the value of the nodal coordinate, i.e. (Ip f )(xi) , f (xi). Note that, in practice, an explicit

form of the nodal basis functions is rarely required. Instead, interpolated values at given points are obtained by first

calculating the modal coordinates̃f = { f̃1, . . . , f̃Np}T from the nodal coordinatesf = { f1, . . . , fMp}T by means of an

inverse transformation and subsequently calculating the interpolated values through the modal representation.

Note that the scheme based on the polymorphic nodal bases utilizes the modal basis functions as the trial and test

functions in the DG formulation. Owing to the orthogonalityof the modal basis, the global mass matrix of this scheme

is diagonal which can be trivially inverted. The element matrices in the ODEs (10) can be easily realized with the

use of the change-of-bases transformations (20) and (26). More precisely, we evaluate the element general stiffness

matrix by considering

Sx = VT
Sx, where Sx ≡

∫

K

∂φ

∂x
φTdx. (27)

The calculation of the general stiffness matrix amounts to determining a stiffness matrixSx. We use a technique

similar to that devised by Hesthaven and Warburton [25] in evaluating such a stiffness matrix. This technique, which

does not require Gaussian integration, is given in AppendixAppendix A.

10
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3.3. Nodal elements: nodal bases on triangles and quadrilaterals

The DG scheme based on the nodal bases uses a nodal basis not only as an efficient means for treating nonlinear

flux terms but also as trial and test functions in the DG formulation, in other words, in this scheme,φ̃m(x) corresponds

simply toφm(x). Here, a nodal basis on triangles and tensor-product nodalbasis on quadrilaterals are considered.

For triangular elements, although the nodal basis on triangles constructed as in the previous subsection represents

an excellent candidate, we consider a nodal basis with a set of interpolation points described in [14, 29, 25]. Unlike

the nodal basis described in the last subsection which is constructed in an element-by-element fashion, such a nodal

basis is defined in a more conventional way,i.e. through a set of nodal basis functions on a single master triangle.

More precisely, the nodal basis{φm(ξ) ∈ Pp(I t)}m=1,...,Np associated with a given nodal set{ξm ∈ I t}m=1,...,Np on the

master elementI t = {ξ = (ξ, η) | ξ, η ≥ −1 andξ + η ≤ 0} is first constructed using the approach described in the

last subsection. Subsequently, nodal basis functions on the physical straight-edged triangular elementK are defined

asφm(x) = (φm ◦ x−1
K )(x) wherex−1

K is an inverse mapping of the affine mappingxK : I t → K:

xK(ξ) =
3∑

i=1

Lt,i xK
i (28)

wherexK
i denotes a coordinate of theith-vertex of the element (the vertices are numbered in a counter clockwise

manner) and the functionsLt,i are defined by

Lt,1 = −(ξ + η)/2, Lt,2 = (ξ + η)/2, and Lt,3 = (1+ η)/2.

Defining the nodal basis in this way presents an advantage in that element matrices,i.e. mass and stiffness matrices,

can be simply obtained by appropriately scaling the elementmatrices associated with the master elements owing

to the mapping (28) having a constant Jacobian. Consequently, the amount of computer memory required and also

computational costs in evaluating the element matrices arelower than a scheme using the nodal basis constructed

directly on the physical elements. It is noted that we use thenear-optimal set of nodal points on the master element

given by [29, 25] (as an example, see Figure 4(a) for such a nodal set withp = 5). In comparison to the nodal set on a

triangle defined by (22), this near-optimal nodal set has a slightly lower value of the Lebesgue constant for the range

of p considered in this work (see [25, 15] for the Lebesgue constant of theses sets).

(a) (b)

Figure 4: Distribution of interpolation points on the master elements withp = 5: (a) triangular element, and (b) rectangular element.

For nodal quadrilateral elements, instead of working withPp, the approximation space on the master element

Iq = [−1, 1]2 is selected asQp(Iq) = Pp([−1, 1]) × Pp([−1, 1]), the tensor products ofPp([−1, 1]), a space of one-

dimensional polynomials of degree at mostp. Let {Pi(x)}i=0,...,p be the normalized Legendre polynomial basis on

11
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[−1, 1], a two-dimensional orthonormal basis onIq can then be defined by

ψ(p+1) j+i+1(ξ) ≡ Pi(ξ)P j(η), 0 ≤ i, j ≤ p. (29)

The number of basis functions and the orderp in this case is related through

Np = (p+ 1)2. (30)

Note the higher number of degrees of freedom in comparison toelements ofPp-type for an given interpolation order

p. A nodal basis{φm}m=1,...,Np is then constructed in an identical way described in the lastsubsection, provided that a

set of nodal points{ξm ∈ I t}m=1,...,Np is given. Here, we consider the set of interpolation points with a Legendre-Gauss-

Lobatto distribution, which is given by

ξ(p+1) j+i+1 = (xi , x j), 0 ≤ i, j ≤ p, (31)

where{xi}i=0,...,p are the zeros of the function (1− x)2d(Pp−1(x))/dx (a nodal set with the classical two-dimensional

Legendre-Gauss distribution was also considered in [30]).Figure 4 depicts the nodal set forp = 5. The nodal basis

functions on the physical (convex) quadrilateral elementK are then defined asφm(x) = (φm ◦ x−1
K )(x) with a bi-linear

mappingxK : Iq→ K:

xK =

4∑

i=1

xK
i Lq,i(ξ) (32)

wherexK
i denotes a coordinate of theith-vertex ofK (the vertices are numbered in a counter clockwise manner) and

Lq,1 = (1− ξ)(1− η)/4, Lq,2 = (1+ ξ)(1− η)/4,
Lq,3 = (1− ξ)(1+ η)/4, andLq,4 = (1+ ξ)(1+ η)/4.

Note that except for rectangular and four-sided parallelogram elements, the Jacobian of the mapping (32) is not a con-

stant; as a consequence, the element matrices (i.e. element mass and stiffness matrices) of each element can no longer

be obtained by scaling the element matrices associated withthe master element. While they can be computed accu-

rately and subsequently stored element-by-element, we adopt a less accurate but more memory-economical approach

in approximating such matrices [30]. Such an approach, owing to the use of a (fixed order) classical two-dimensional

Gauss quadrature, defines the approximate element matricesas a multiplication of the precomputed matrices defined

on the master element and the precomputed matrices involvedwith the coordinate mapping. The coordinate-mapping

matrices, which vary element-by-element, are diagonal andthus require less storage.

3.4. Temporal discretization

The system of ODEs governing the time evolution of the discrete solution for all elements can be written as

M
dũh

dt
= r (̃uh, t) (33)

whereM represents the global mass matrix,ũh denotes the global vector of the expansion coordinates (modal coor-

dinates for the schemes based on polymorphic bases and nodalcoordinates for nodal bases), andr (̃uh, t) denotes the

right-hand-side vector arising from the terms that are not associated with the time derivative.

12
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The time-dependent system (33) is numerically integrated using an explicit fourth-fifth order Runge-Kutta-Fehlberg

(RKF45) method (seee.g.,[31, 32] for a detailed account of this scheme). RKF45 has a mechanism to automatically

select the step size∆t used in the integration to control accuracy of the solution.Concisely, the integrator utilizes the

fourth-order and fifth-order Runge-Kutta scheme that uses all values of substages of the fourth-order scheme. It ac-

cepts the solution from the fifth order subscheme and adjuststhe step size to control the truncation error of the fourth

order subscheme. Here, we use the RKF45 subroutine written by Shampineet al. [33]. This subroutine requires an

external subroutine returning the right-hand-side vectorof the ODEs. We summarize in Appendix Appendix B a

brief outline of steps used in an implementation of the calculation of the right-hand-side vectorM−1r . Note that, in

the RKF45, the temporal accuracy of the solution is controlled by the parametersrelerr andabserr, denoted here

asεr andεa (εr > εa). Since we focus on assessing the accuracy of the spatial discretization, the values of these pa-

rameters are set to sufficiently small values in order to keep temporal discretization errors negligible when compared

with spatial errors.

4. Numerical Experiments

The numerical performance of the nodal DG (NDG) method and the polymorphic nodal DG (PNDG) method (i.e.

the hybrid modal/nodal DG method) are assessed by evaluating their accuracy,computing times, and computational

cost per accuracy. To facilitate the investigation, we consider a nonlinear problem with a smooth manufactured

solution as well as the nonlinear Stommel problem as test problems. The manufactured-solution problem has ana

priori defined exact solution and thus allows for an accurate measure of error. We therefore use this problem in our

comprehensive assessment. The performance study is carried out by systematically varying the interpolation orderp

of the DG schemes and the element sizeh of the computational mesh.

In the study, we mainly use the brokenL2 norm

‖ f (x)‖Ωh =


∑

K∈Th

∫

K

f (x)2dx



1/2

(34)

in measuring the error in the approximate solution. Computing times reported below are an average of at least two

identical simulations. It is important to note that the computing times closely relate to the implementation details. The

main computing cost involves evaluations of the right-hand-side of the ODEs (33). The computing times reported here

correspond to the results from using an implementation outlined briefly in Appendix Appendix B for the evaluation

of the right-hand-side term.

4.1. Numerical Flux

In this study, we use the local Lax-Friedrichs (LLF) flux as a numerical flux in the DG discretization. To define

this flux, consider two adjacent elementsK− andK+ and lete be their common edge (which is not necessarily the

entire edge of an element). The LLF flux is defined as follows, for x ∈ e

F̂ =
F(q−h ) + F(q+h )

2
+

C
2

n∓(q∓h − q±h ) (35)

whereq−h andq+h are respectively the solution value atx of the elementK− andK+, n− = −n+, and the constantC

corresponds to the largest value, along the edgee, of the absolute maximum eigenvalue of the normal flux Jacobian

13
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matrix,

max
s∈[q−h ,q

+
h ]

∣∣∣∣∣∣λ
(
nx
∂ f
∂q

∣∣∣∣∣
s
+ ny

∂g
∂q

∣∣∣∣∣
s

)∣∣∣∣∣∣ = max
s∈[q+h ,q

−
h ]

[(
|n · u| + |

√
gH|

) ∣∣∣∣∣
s

]
(36)

whereλ(·) denotes the eigenvalue of the matrix. Note that the boundary conditions are enforced weakly by properly

specifying an exterior state in the numerical flux along the physical boundaries such that the desirable conditions are

obtained in a weak sense.

4.2. Manufactured solutions

Here, a problem with an exact solution is used as a verification tool for assessing the DG schemes. Specifically,

we consider the problem in which the vector of source termss(q, x, t) corresponds to a vector of terms arising from

substituting thea priori defined smooth functions below

H = 2ξ0
cos(σ(x− x1)) cos(σ(y− y1))

cos(σ(x2 − x1)) cos(σ(y2 − y1))
cos(ω(t + τ)) + H0

uH = υ0
sin(σ(x− x1)) cos(σ(y− y1))

cos(σ(x2 − x1)) cos(σ(y2 − y1))
sin(ω(t + τ))

vH = υ0
cos(σ(x− x1)) sin(σ(y− y1))

cos(σ(x2 − x1)) cos(σ(y2 − y1))
sin(ω(t + τ))

(37)

into the left hand side of (1). In (37),σ, ω, τ, x1, x2, y1, y2, ξ0, υ0 andH0 are positive constants. The value ofH0 is

selected sufficiently large so thatH is positive everywhere. The exact solution is used to prescribe the initial condition

and the boundary conditions. Note that when the value ofσ is identical to that ofω and the value ofξ0 is identical

to that ofυ0, this manufactured solution leads to a vanishing forcing term for the depth-averaged continuity equation.

In all numerical calculations reported below, the values ofthe parameters appearing in (37) are set toσ = 0.0001405

rad/m,ω = 0.0001405 rad/s, τ = 3456 s,x1 = 40× 103 m, x2 = 150× 103 m, y1 = 10× 103 m, y2 = 55× 103 m,

ξ0 = 0.25 m,v0 = 0.25 m2/s andH0 = 2 m. The simulations are performed in the rectangular computational domain

of [x1, x2] × [y1, y2]. The integration is carried out untilt f = 172800 s (a period of the solution is approximately 44720

s).

Below, we first present numerical results computed on so-called regular meshes and subsequently results computed

on unstructured meshes. We consider the DG schemes withp ranging from 1 to 5. Note that, in the PNDG scheme,

we employ quadrilateral elements withpd = 1 for p = 1 and 2 and withpd = 2 for p = 3 to 5; for triangular elements,

we usepd = 0 regardless of the orderp. This choice ofpd stems directly from the aspect concerning accuracy and

computational operations of the polymorphic bases. The values of the parameters controlling temporal error (εr , εa)

in the RKF45 are set to (5× 10−7, 5× 10−9).

4.2.1. Solution computed on regular meshes

We first consider three so-called regular mesh configurations, namely, a regular triangular mesh, a rectangular

mesh, and a skewed-rectangular mesh. The last configurationrefers to a mesh with convex quadrilaterals. In each

configuration, four nested meshes are employed in order to examine theh convergence property. In all configurations,

the meshes, from the coarsest to the finest resolution, are denoted ash, h/2,h/4, andh/8 respectively. Figure 5 shows

the coarsest mesh of each configuration, which is built basedon a uniform grid of 25× 11 points. For the skewed-

rectangular mesh configuration, the coarsest mesh is obtained by relocating interior points of the uniform grid. Each

interior point is relocated in either direction from its original location with a distance varying randomly from 0 to

14
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(a) Triangular mesh,Nel = 480.

(b) Rectangular mesh,Nel = 240.

(c) Skewed-rectangular mesh,Nel = 240.

Figure 5: Coarsest regular mesh used in the SWE with a manufactured solution; (a) triangular mesh, (b) rectangular mesh,and (c) Skew-rectangular
(quadrilateral) mesh.
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25% of the grid spacing. Note that the coarsest triangular mesh consists of 480 elements and the coarsest quadrilateral

meshes consist of 240 elements. The three finer meshes are obtained by applying successive uniform refinements to

the coarsest mesh. The refinement divides each triangle intofour similar sub-triangles and uniformly divides each

rectangle into four sub-rectangles (i.e., the number of elements increases four times in each refinement step). Note

also that for the same resolution, the number of elements in the rectangular mesh is half that of the triangular mesh.

4.2.1.1. Accuracy.As an example, we plot in Figure 6(a), without smoothing, theapproximate total water column

height at the final simulation timet f = 172800 from the PNDG scheme withp = 3 andpd = 1 on the rectangular mesh

of h-resolution (the triangles shown there are drawn for plotting purpose so that the solution at the interior nodes can

be visualized). Note the qualitative agreement with the exact solution depicted in Figure 6(b). Table 2 tabulates the

(a) PNDG solution
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Figure 6: Manufactured-solution test problem: total watercolumn att = 2 day; (a)Hh obtained from the PNDG scheme withp = 3 andpd = 1 on
the rectangularh-mesh; (b) manufactured exact solution.

accuracy in the approximate total water column heightHh through the normalizedL2 errors,|Ω|−1/2‖H − Hh‖Ωh. In

this table, data from DG schemes is grouped according to an interpolation orderp employed. Within each data group,

we list and highlight the error of the scheme that yields the most accurate overall solution; for ease of comparison, we

tabulate the errors of the other schemes as the ratio of the error of a specific scheme relative to the error of the most

accurate scheme (for instance, forp = 3 andh/2-meshes, the error from the NDG scheme on the triangular mesh is
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Table 2: NormalizedL2 errors inHh, EH ≡ |Ω|−1/2‖H − Hh‖Ωh , of the overall most accurate scheme for a given orderp and error ratios (specific
scheme relative to the most accurate scheme for thatp), as computed on regular meshes, and rate ofh-convergence. A code [ppmn] denotes the
DG method preceding it.

DG bases & Mesh p
EH in [ppmn]
EH in [ppm1]

on
h
2q

-mesh
h-conv. rate

h h/2 h/4 h/8

NDG quad [p1m1] 1 1.61e-02 4.14e-03 1.04e-03 2.61e-04 1.98

1.00 1.00 1.00 1.00 1.98

NDG skewed-quad [p1m2] 1 1.12 1.12 1.12 1.12 1.99

PNDG quad [p1m3] 1 1.16 1.13 1.12 1.12 2.00

PNDG tri [p1m4] 1 1.14 1.14 1.14 1.14 1.98

NDG tri [p1m5] 1 1.14 1.14 1.14 1.14 1.98

PNDG skewed-quad [p1m6] 1 1.29 1.26 1.25 1.25 2.00

NDG quad [p2m1] 2 3.29e-04 3.96e-05 4.91e-06 6.16e-07 3.02

1.00 1.00 1.00 1.00 3.02

NDG skewed-quad [p2m2] 2 1.49 1.46 1.44 1.43 3.04

PNDG tri [p2m3] 2 2.12 2.01 1.97 1.97 3.05

NDG tri [p2m4] 2 2.12 2.01 1.97 1.97 3.05

PNDG quad [p2m5] 2 3.52 3.38 3.32 3.28 3.05

PNDG skewed-quad [p2m6] 2 4.59 4.33 4.20 4.13 3.07

NDG quad [p3m1] 3 1.73e-05 1.03e-06 6.43e-08 3.94e-09 4.03

1.00 1.00 1.00 1.00 4.03

NDG skewed-quad [p3m2] 3 1.72 1.75 1.75 1.74 4.02

PNDG tri [p3m3] 3 3.05 3.26 3.23 3.28 4.00

NDG tri [p3m4] 3 3.05 3.26 3.23 3.28 4.00

PNDG quad [p3m5] 3 6.09 6.50 6.50 6.64 3.99

PNDG skewed-quad [p3m6] 3 7.98 8.99 9.12 9.35 3.96

NDG quad [p4m1] 4 8.14e-07 2.56e-08 8.32e-10 2.77e-11 4.95

1.00 1.00 1.00 1.00 4.95

NDG skewed-quad [p4m2] 4 2.22 2.14 2.10 2.07 4.98

PNDG tri [p4m3] 4 4.69 4.73 4.62 4.43 4.98

NDG tri [p4m4] 4 4.75 4.84 4.73 4.54 4.97

PNDG quad [p4m5] 4 10.74 10.68 10.33 9.70 5.00

PNDG skewed-quad [p4m6] 4 15.00 17.53 17.61 16.64 4.90

NDG quad [p5m1] 5 4.08e-08 6.37e-10 1.01e-11 9.34e-12* 5.99

1.00 1.00 1.00 1.00* 5.99

NDG skewed-quad [p5m2] 5 2.63 2.67 2.60 0.93* 6.00

NDG tri [p5m3] 5 7.97 7.92 7.75 0.89* 6.01

PNDG tri [p5m4] 5 8.12 8.03 7.96 0.43* 6.00

PNDG quad [p5m5] 5 23.48 24.31 24.60 1.46* 5.95

PNDG skewed-quad [p5m6] 5 43.48 49.74 50.72 0.93 5.88
* The temporal errors are not negligible in comparison to the spatial errors.
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3.26 times the error from the NDG scheme on the rectangular mesh, more precisely, 3.26× (1.03× 10−6)). Note that

the higher the error ratio, the less accurate the solution incomparison to that of the scheme highlighted.

Evidently, the error levels in the approximate solution become smaller either as the order of basis functionsp

increases or as the element size decreases. It can be observed that, overall, for the same orderp and similar mesh

resolution, the approximate solutionHh ordering from greater to lesser accuracy corresponds to thefollowing schemes:

NDG on rectangles, NDG on skewed rectangles, NDG and PNDG on triangles, PNDG on rectangles, and PNDG on

skewed rectangles. The error ratios of less accurate schemes to the most accurate scheme are higher asp increases, for

example, the error ratio of the PNDG solution on rectangle meshes to the NDG solution on rectangles increases from

approximately 1.1 times forp = 1 to roughly 24 times forp = 5. Note that, for triangular meshes, the PNDG and NDG

schemes yield solutions with virtually indistinguishableerror levels. This can be expected since both schemes use the

Pp-type bases for triangular elements. It is evident that, on the rectangular mesh, the NDG scheme yields a more

accurate solution than the PNDG scheme. The same can be said for the solutions from the NDG and PNDG schemes

on the skewed-rectangular mesh. We believe that such a gain in accuracy is attributed mainly to the tensor-product

bases employed in the NDG scheme on rectangles being able to span additional cross polynomial terms not belonging

to the span of polynomial bases employed in the PNDG scheme. Furthermore, at the same mesh resolution, the NDG

scheme on rectangles yields lower error levels inHh than the schemes on triangles even though a rectangular element

used has an area that is twice that of a triangular element (however, both elements have similar edge lengths). This

demonstrates to some extent the benefit of the tensor productbases in terms of accuracy. It can be noticed that, the use

of skewed-rectangular elements, as expected, degrades theaccuracy inHh when compared to the use of rectangular

elements. This suggests that the milder the size transitionof the skewed rectangles, the more accurate the tensor-

product basis solutions. Note that the NDG scheme on skewed rectangles still produces more accurate solutions than

the schemes on triangles.

The numerical order of convergence, which refers to the exponent values from fitting chs with c being constant to

the error norm|Ω|−1/2‖H−Hh‖Ωh, is reported in the last column of Table 2. We note that all theDG schemes, regardless

of bases or element shape, exhibit a convergence rate of approximatelyO(hp+1) for the total water column height (note

that each scheme has a different value for the constantc). Note that the degradation in the order of convergence for

most schemes withp = 5 and theh/8 meshes is due to the fact that the temporal errors from the RKF45 integrator,

with the specific error tolerance employed, are no longer negligible in comparison to the spatial errors. Note that the

observed convergence rate is higher than that of the theoretical estimateO(hp+1/2) expected for a Lax-Friedrichs DG

solution to a problem with nonlinear fluxes [34]. To examine the p-convergence properties, the error levels obtained

for each mesh resolution are plotted against the orderp used on the semi-log scale (error levels on a log scale andp

on a linear scale). Figure 7 shows examples of such plots for theh- andh/2-meshes. The curves for all DG schemes

appear approximately as straight lines, indicating that all DG schemes considered exhibit the expected exponential

convergence rate with respect top. Although not reported here in detail, we note that the convergence rates ofuH

andvH are betweenO(hp) andO(hp+1). The convergence of the schemes on rectangles and triangles appear to behave

somewhat irregularly; the convergence rates of these schemes are typically close to the expected rateO(hp+1/2) for

evenp and close toO(hp+1) for odd p. This somewhat irregular behavior appears less pronouncedin the schemes on

skewed rectangles with the numerical order of convergence being typically close top+ 1 for both odd and evenp.

4.2.1.2. Computing times.Table 3 tabulates computing times (in seconds), denoted asTc, required in the simulations.

Note that data reported are an average of three identical simulations (except for the schemes withp = 5 andh/8-mesh

combination where they are the results from two runs). In this table, data is grouped according to the interpolation

orderp used. Within each data group, the computing times of the scheme using the least computing time are listed and

highlighted; the computing times of the other schemes are tabulated as the ratio of the computing time of a specific
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Table 3: Computing timesTc (in seconds) of the overall fastest DG scheme for a given order p and time ratios (specific scheme relative to the
fastest scheme for thatp), as computed on regular meshes. A code [ppmn] denotes the DG method preceding it.s denotes the rate of computing
times as function ofh, i.e. Tc ∼ O(hs).

DG Bases& Mesh p
Tc of [ppmn]
Tc of [ppm1]

on
h
2q

-mesh s-rate

h h/2 h/4 h/8

PNDG quad [p1m1] 1 124 827 6068 41151 -2.80

1.00 1.00 1.00 1.00 -2.80

PNDG skewed-quad [p1m2] 1 1.02 1.07 0.97 1.01 -2.78

NDG skewed-quad [p1m3] 1 1.43 1.40 1.30 1.32 -2.75

NDG quad [p1m4] 1 1.35 1.43 1.32 1.36 -2.79

PNDG tri [p1m5] 1 2.28 2.79 2.36 2.28 -2.77

NDG tri [p1m6] 1 2.91 2.83 2.62 2.53 -2.73

PNDG skewed-quad [p2m1] 2 238 1755 11550 76385 -2.77

1.00 1.00 1.00 1.00 -2.77

PNDG quad [p2m2] 2 1.02 0.95 1.06 1.00 -2.78

NDG skewed-quad [p2m3] 2 1.73 1.54 1.48 1.51 -2.70

NDG quad [p2m4] 2 1.78 1.62 1.54 1.53 -2.70

PNDG tri [p2m5] 2 2.00 2.20 2.17 2.10 -2.79

NDG tri [p2m6] 2 3.03 2.65 2.70 2.71 -2.72

PNDG quad [p3m1] 3 411 2727 19791 126896 -2.77

1.00 1.00 1.00 1.00 -2.77

PNDG skewed-quad [p3m2] 3 0.99 1.06 0.96 1.04 -2.78

NDG skewed-quad [p3m3] 3 1.88 1.81 1.67 1.81 -2.74

NDG quad [p3m4] 3 1.97 1.95 1.79 1.78 -2.71

PNDG tri [p3m5] 3 1.84 2.19 1.96 2.01 -2.79

NDG tri [p3m6] 3 2.80 2.70 2.48 2.58 -2.72

PNDG quad [p4m1] 4 688 4424 28808 202288 -2.73

1.00 1.00 1.00 1.00 -2.73

PNDG skewed-quad [p4m2] 4 1.03 1.08 1.07 1.24 -2.81

PNDG tri [p4m3] 4 1.71 2.10 2.08 1.93 -2.78

NDG skewed-quad [p4m4] 4 2.09 2.08 2.02 2.22 -2.75

NDG quad [p4m5] 4 2.17 2.17 2.20 1.91 -2.68

NDG tri [p4m6] 4 2.92 2.98 3.06 2.76 -2.71

PNDG quad [p5m1] 5 1070 6905 43926 319869 -2.68

1.00 1.00 1.00 1.00 -2.68

PNDG skewed-quad [p5m2] 5 1.03 1.09 1.14 1.47 -2.75

PNDG tri [p5m3] 5 1.66 2.00 1.75 2.08 -2.72

NDG skewed-quad [p5m4] 5 2.29 2.32 2.28 2.93 -2.67

NDG quad [p5m5] 5 2.40 2.41 2.42 2.10 -2.69

NDG tri [p5m6] 5 2.75 2.72 2.66 2.52 -2.66
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(a)h-resolution (b) h/2-mesh
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Figure 7: NormalizedL2-error |Ω|−1/2‖H − Hh‖Ωh at t = 2 days as a function of order of basesp. (a)h-meshes; (b)h/2-meshes.

scheme relative to the computing time of the fastest scheme.In every scheme, while holding the mesh resolution

unchanged, the computing time required increases as the interpolation orderp of the scheme increases. Such increases

in computing times stem primarily from the following two reasons. First, the degrees of freedom per element increase

as p increases. Second, the time step size∆t used is smaller asp increases in order to keep the temporal accuracy

sufficiently small and, as an explicit time scheme is used, to maintain numerical stability. This aspect is implicitly

reflected by numerical data listed in Table 4 which shows an increase inNRHS (i.e., decrease in∆t) as p increases.

Note thatNRHS denotes the total number of calls made within the RKF45 integrator to a subroutine calculating the

right hand side of the ODEs (33). Likewise, while fixingp, the computing times required increases as the mesh is

refined. The increasing computing time is the direct consequence of an increase in the number of elements (hence

the total DOFs). Furthermore, as the mesh size decreases, the time step size∆t used is smaller in order to maintain

temporal accuracy and to ensure stability; this aspect can be discerned in an increasingNRHS as the element size

decreases (see Table 4).

It can be observed from Table 3 that, in the calculations based on quadrilateral elements, the PNDG scheme

requires less computing time (approximately between 1.4 to 2.4 times) than the NDG scheme. This behavior is to

be expected since, on quadrilateral elements, the DOFs per element of the PNDG scheme are less than that of the

NDG scheme for allp. Furthermore, it can be noticed in Table 4 that, in the quadrilateral-element calculations,NRHS

required in the PNDG scheme are also fewer than that of the NDGscheme; this results in an additional reduction in

computing time for the PNDG scheme in comparison to the NDG scheme. Table 3 shows that the PNDG scheme on

quadrilaterals is faster than the PNDG scheme and NDG schemeon triangles. This is an expected behavior and stems

directly from the fact that the number of nodes per element ofthe polymorphic quadrilateral element is only slightly

greater than that of the polymorphic and nodal triangular element and the number of elements in the quadrilateral

mesh. In other words, for a given orderp and similar mesh resolution, the PNDG scheme on quadrilaterals performs

fewer computational operations than the PNDG and NDG schemeon triangles. It can be noticed from Table 3 that

the PNDG scheme on triangular is faster than the NDG scheme ontriangles. We note that this lower computing in the

PNDG scheme is a result of the RKF45 time integrator automatically selecting larger time step sizes∆t for the PNDG

scheme (this reflects in a fewer calls to the subroutine evaluating the RHS vector–see Table 4). The NDG scheme

on quadrilaterals, due to the use of tensor product bases, has higher DOFs per element than that of the PNDG and

NDG scheme on triangles, more precisely, 2− 2/(p + 2) times higher DOFs per element. The cost per element in

evaluating one volume integral in the NDG scheme on quadrilaterals is approximately 4− 4(2p+ 3)/(p+ 2)2 times

20



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Table 4: The number of calls to a subroutine computing RHS vector required in RKF45/PNDG and RKF45/NDG methods on regular meshes.

PNDG tri NDG tri

p h h/2 h/4 h/8 h h/2 h/4 h/8

1 15853 25117 39325 61759 19144 30079 47743 76507

2 21565 34807 54193 84075 30475 48547 75679 118123

3 27067 42457 66109 104439 39733 61609 95995 156349

4 32053 50293 78765 130015 53581 84673 132133 207202

5 36823 57937 93001 171510 62455 96691 151249 248853

PNDG quad NDG quad

p h h/2 h/4 h/8 h h/2 h/4 h/8

1 11431 17611 28477 45667 13665 22708 36832 57985

2 17191 27601 42967 66769 25739 39614 60774 93475

3 22405 34927 54367 84859 36515 55881 85801 132615

4 26875 42043 65677 103247 47704 73195 112633 175368

5 31255 48997 76807 122707 59581 91519 141325 221995

higher than the NDG and PNDG scheme on triangles. Hence, it can be expected that the reduction of the number of

elements associated with the rectangular mesh might offset the higher cost of using tensor-product bases only up to a

certain interpolation orderp. A crude estimate made in the previous work [30] shows that the cost of evaluating the

RHS vector in the NDG scheme on quadrilaterals is expected tobe greater than that of the NDG or PNDG scheme

on triangles forp > 1. Although not shown here in detail, we note that the valuep at which the cost of evaluating

RHS vector in the NDG scheme on quadrilaterals becomes more expensive is noticeably higher than the estimate. We

speculate that the efficiency of memory traffic and cache management are partial reasons explaining why this occurs at

p higher than the estimate. In terms of wall clock time, Table 4shows that the NDG scheme on quadrilateral becomes

slower than the PNDG scheme on triangles whenp > 4; the NDG scheme on quadrilateral is faster the NDG on

triangles for allp considered here (p = 1 to 5).

It can be verified from data in Table 3 that, for a fixed interpolation orderp and varyingh, the computing timeTc

behaves approximately likechs, wherec andsare constant, in other words

Tc ∼ O(hs). (38)

The numerical ratess are tabulated in the last column of Table 3. Notice that the differences between the rates are

relatively small (the value ofs ranges from−2.7 to−2.8.) and the rates appear to be independent of the interpolation

orderp. The values of the constantc, as expected, vary for the different DG schemes as well as the interpolation order

p.

4.2.1.3. Computational cost per accuracy.The critical question when comparing numerical techniquesis the compu-

tational cost for a specific level of accuracy, or conversely, an error level to be achieved for a given computational cost.

Figures 8 shows on a log-log scale the accuracy ofHh through normalizedL2 errors versus the computing time. In this

figure each curve represents the data computed on the four refined meshes with the interpolation orderp being held

constant. Figure legends indicate the combination of DG basis, mesh configuration, and interpolation orderp from

which the data are obtained. In each figure, we plot the data from the PNDG scheme on triangles for inter-comparison
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purposes. It can be observed that all the curves appear approximately as straight lines on a log-log scale. Therefore,
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Figure 8: Normalized errors|Ω|−1/2‖H − Hh‖Ω at t f = 172800vs. computing times in seconds of DG solutions on regular grids.Solid lines
represent the data of (a) PNDG on rectangles, (b) NDG on rectangles, (c) NDG on triangles, and (d) NDG on skewed-rectangles. Dashed lines in
(a)-(d) represent the data of PNDG on triangles:−⋄− p = 1,−◦− p = 2,−�− p = 3,−▽− p = 4, and−△− p = 5

the computational time as a function of accuracy in the totalwater column heightHh can be approximated by

Tc ∼ c2(EH)s2 (39)

wherec2 ands2 are respectively the constant and the rate of the cost function. The discussions above on accuracy and

computing times implies that

s2 ≈
2.7

−(p+ 1)
. (40)

The constant pairs (c2, s2) for the cost functions associated with the DG schemes considered are tabulated in Table 5.

It can be noticed from Figures 8 that, for a given level of accuracy, the wall clock time decreases substantially as

p increases. To gain more insight into the effect of p on a cost per accuracy viewpoint, we evaluate the computing

time for a specified level of errorε from the derived cost functions,i.e. finding Tc by using (39) withEh = ε. Table

6 tabulates the computing times required in each DG scheme with various ordersp to yield a numerical solution with

the specified levels of errorε. The value inside the parenthesis denotes the cost ratio of the computational cost for

the identical error level usingp− 1 to that usingp order interpolants. Note that such a value indicates a reduction in
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Table 5: Constant and rate (c2, s2) in the cost functionsTc = c2(EH )s2 of DG schemes on regular grids.

DG bases & mesh
Cost coefficients (c2, s2)

p = 1 p = 2 p = 3 p = 4 p = 5

NDG tri (1.49,-1.37) (1.07,-0.89) (1.40,-0.68) (2.27,-0.54) (4.01,-0.44)

PNDG tri (1.14,-1.40) (0.65,-0.91) (0.82,-0.70) (1.15,-0.56) (2.15,-0.45)

PNDG skewed-quad (0.58,-1.39) (0.69,-0.90) (0.81,-0.70)(1.08,-0.57) (2.25,-0.47)

PNDG quad (0.47,-1.40) (0.51,-0.91) (0.72,-0.69) (1.16,-0.55) (2.10,-0.45)

NDG skewed-quad (0.68,-1.39) (0.46,-0.89) (0.63,-0.68) (0.91,-0.55) (1.93,-0.45)

NDG quad (0.51,-1.41) (0.33,-0.89) (0.50,-0.67) (0.76,-0.54) (1.25,-0.45)

cost when raising the interpolation order fromp− 1 to p (for example, withε = 1.0× 10−4, the cost required in the

NDG scheme on triangular elements reduces approximately 120 times when raisingp from 1 to 2). Results shown in

this table clearly indicate the appeal of using higher orderschemes from the perspective of cost per accuracy. As an

example, suppose that an accuracy of 10−6 is required, the use of schemes withp = 1 would require approximately on

the order of 3 years of computing time, a prohibitively impractical cost (this corresponds to an expected cost on the

serial machine; a dramatically lower wall clock time can be achieved by utilizing a parallel implementation). By using

schemes withp = 2, the computing times required are approximately on the order of 1 to 2 days. Note that computing

time decreases approximately three orders of magnitude. The schemes withp = 3 requires approximately on the order

of 1 to 2 hours of computing time. Note the cost reduces roughly four orders of magnitude compared to the schemes

with p = 1 and approximately an order magnitude compared to the schemes with p = 2. The computing times

required reduce further as the interpolation orderp increases. It is evident from Table 6 that the smaller the specified

error levelε, the more pronounced the gain in computational cost per accuracy achieved by raising the interpolation

orderp of the scheme. Although the computational cost for a given level of accuracy reduces as the interpolation order

p increases, the benefit diminishes as indicated by the reduction in the cost ratios inside parentheses shown in Table

6. Arguably, although the scheme withp = 2 shows the highest gain in terms of the cost reduction in comparison to

the scheme withp− 1, using the schemes withp = 3 appears to be an appealing choice due to an evident significant

performance gain over usingp = 1 while showing moderate gains when compared to the schemes with p = 2.

Table 7 shows the effect of the different combinations of DG bases and mesh configurations on thecost per

accuracy performance. In this table, the corresponding computing cost for the given levels of accuracy of the PNDG

scheme on triangles are highlighted. The computing costs ofother combinations of DG bases and mesh configurations

are reported as a ratio of the computing time for the specific scheme to the computing time for the PNDG scheme on

triangles for the same interpolation orderp (the higher the ratio, the higher the computational cost required to achieve

a specified level of accuracy in comparison to that of the PNDGscheme on triangles). It can be seen from this table

that the NDG scheme on rectangles exhibits the highest cost per accuracy performance among the combination of

bases and mesh configurations considered. We note the performance gain achieved with nodal quadrilateral elements

is not as pronounced in comparison to the gain realized usingthe high order schemes.

The numerical results discussed above and in the previous sections demonstrate the appeal of the use of tensor

product bases on quadrilaterals, from both accuracy and cost per accuracy perspectives. Note that nodal tensor-product

basis can represent more cross polynomial terms than the bases on triangles; thus it can be expected in general that, for

a problem with a smooth solution, the approximate solution from the nodal tensor-product elements would have higher

or approximately the same level of accuracy as those from thebases on triangles. This expectation together with the

presented numerical results leads us to believe that the useof methods with nodal tensor-product bases is particularly
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Table 6: Computing time,Tε
c (in seconds) for a given level of errorε in Hh of various DG solutions on regular grids. Numeric values in the

parenthesis are the ratio betweenTε
c of a DG scheme orderp− 1 and that ofp.

DG bases p Projected computing timeTε
c

& mesh ε = 5.0e-03 ε = 1.0e-04 ε = 1.0e-06 ε = 1.0e-08

PNDG tri

1 1898 452923 2.85e+08 1.80e+11

2 82(23.1) 2934(154.4) 197228(1446.1) 1.33e+07(13546.9)

3 33(2.5) 512(5.7) 12757(15.5) 317901(41.7)

4 22(1.5) 200(2.6) 2629(4.9) 34605(9.2)

5 24(0.9) 140(1.4) 1133(2.3) 9154(3.8)

NDG tri

1 2173 470487 2.64e+08 1.48e+11

2 121(18.0) 3950(119.1) 239892(1101.1) 1.46e+07(10177.3)

3 51(2.3) 736(5.4) 16901(14.2) 387849(37.6)

4 41(1.3) 344(2.1) 4230(4.0) 52042(7.5)

5 42(1.0) 235(1.5) 1799(2.4) 13768(3.8)

PNDG skewed-quad

1 924 213139 1.29e+08 7.80e+10

2 82(11.3) 2796(76.2) 178196(723.4) 1.14e+07(6863.8)

3 33(2.4) 521(5.4) 13178(13.5) 333343(34.1)

4 22(1.5) 211(2.5) 2953(4.5) 41296(8.1)

5 27(0.8) 168(1.3) 1455(2.0) 12580(3.3)

PNDG quad

1 777 185355 1.17e+08 7.35e+10

2 64(12.2) 2241(82.7) 148117(787.7) 9789892(7502.1)

3 28(2.3) 426(5.3) 10367(14.3) 252525(38.8)

4 21(1.3) 178(2.4) 2207(4.7) 27334(9.2)

5 23(0.9) 133(1.3) 1053(2.1) 8361(3.3)

NDG skewed-quad

1 1048 236797 1.39e+08 8.25e+10

2 51(20.5) 1667(142.1) 100492(1390.9) 6059758(13615.6)

3 23(2.2) 330(5.0) 7576(13.3) 173840(34.9)

4 17(1.4) 149(2.2) 1895(4.0) 24177(7.2)

5 21(0.8) 117(1.3) 915(2.1) 7129(3.4)

NDG quad

1 886 217372 1.41e+08 9.20e+10

2 37(23.8) 1227(177.1) 75121(1882.6) 4598333(20009.8)

3 18(2.1) 247(5.0) 5487(13.7) 121693(37.8)

4 13(1.3) 111(2.2) 1336(4.1) 16131(7.5)

5 13(1.0) 78(1.4) 612(2.2) 4830(3.3)
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Table 7: Manufactured-solution problem on regular grids: computing timeT p,ε
c for a specified level of errorε in Hh of the PNDG triangular solution

for a givenp and time ratios (given schemes relative to the PNDG scheme ontriangles for thatp). A code [mn] denotes the DG scheme preceding
it.

T p,ε
c of [mn]/T p,ε

c of [m1]

DG bases & mesh p = 1 p = 2 p = 3 p = 4 p = 5

ε = 2.0e-03 ε = 3.0e-05 ε = 9.0e-07 ε = 2.0e-08 ε = 7.0e-09

PNDG tri [m1] 6841 8816 13731 23478 10762

1.00 1.00 1.00 1.00 1.00

NDG tri [m2] 1.12 1.31 1.32 1.52 1.50

PNDG skewed-quad [m3] 0.48 0.94 1.03 1.18 1.38

PNDG quad [m4] 0.41 0.76 0.81 0.80 0.91

NDG skewed-quad [m5] 0.55 0.55 0.59 0.70 0.78

NDG quad [m6] 0.47 0.41 0.43 0.47 0.53

appealing for the low to moderate interpolation orderp since higher efficiency in terms of cost per accuracy is likely

be achieved. Note also that although they may not be particularly appealing in terms of cost per accuracy, the schemes

based on the polymorphic bases on quadrilaterals show superiority in terms of the computing times required to reach

the final solution. This makes such the scheme appealing in a scenario where the computational time available is

limited.

We have also examined a similar performance analysis based on theL∞ error. Although not reported in detail

here, we note that the results exhibit similar behavior to that based on theL2 error described above.

4.2.2. Solution computed on unstructured meshes.

Next we consider DG solutions on unstructured meshes with various elements and configurations, namely, an

unstructured triangular mesh, a quadrilateral mesh, a mixed triangular-quadrilateral mesh, and a polygonal mesh. In

each configurations, we employ meshes of varying levels of resolution. They are denoted, from the coarsest to finest,

h, h/2, h/4, andh/8, respectively. Figure 9 shows theh-mesh for each configuration. The triangularh-mesh consists

of 792 triangular elements with the element edges of length at most equal to 4500. The finer triangular meshes are

obtained by applying successive regular refinements; see Table 8(a) for the number of triangles in each triangular

mesh. We obtain other mesh configurations from the triangular meshes. The mixed triangular-quadrilateral mesh is

built naively by simply merging pairs of two adjacent triangles in the triangular mesh into quadrilaterals. The merging

process is conducted in such a way that every resulting quadrilateral element has a determinate Jacobian. In other

words, we do not merge two triangles forming a quadrilateralwith interior angles equal to or greater than 180◦. As is

seen in Figure 9(b), the resulting mixed meshes contain triangular elements scattered over the computational domain.

Table 8(b) lists the number of triangular and quadrilateralelements in each mixed mesh. For the polygonal mesh, an

element is formed by first collecting a set of all triangles sharing a vertex and subsequently connecting a line between

the centroids of any two elements in such a set having a commonedge. In this way, the number of sides of the resulting

polygon corresponds to the number of triangles sharing the vertex. The total number of polygons in the resulting mesh

therefore equals the total number of vertices in the given triangular mesh. Note that any triangulation of a given set

of n points yields 2n− 2− k triangles [35] wherek is the number of points lying on the boundary of the convex hull

of the considered set. Therefore, for a triangular mesh withthe number of vertices in the interior far greater than the

number lying on the boundary, the number of elements in the resulting polygonal mesh would be fewer than that in

the considered triangular mesh. Table 8(c) tabulates the number of elements classified by shapes in each resulting
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(a) Triangular mesh,Nel = 792

(b) Mixed triangular-quadrilateral mesh,Nel = 457

(c) Polygonal mesh,Nel = 433

(d) quadrilateral mesh,Nel = 594

Figure 9: Unstructuredh-meshes employed in DG solution to the SWE with a manufactured solution; (a) triangular mesh, (b) quadrilateral mesh,
(c) mixed triangular-quadrilateral mesh, and (d) polygonal mesh.

polygonal mesh. For the same so-called resolution, the total number of elements in the polygonal mesh is less than

that of its associated triangular mesh. For a given triangular mesh, the quadrilateral mesh is built by placing a point

at the centroid of each triangle and forming quadrilateral elements by connecting this point to the mid points of the

element edges (we note that this construction is suggested by an anonymous reviewer). This strategy divides each

triangle into three quadrilaterals. The mesh-size resolution of the derived quadrilateral mesh is comparable to that
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Table 8: Number of elements categorized by shapes in computational meshes; (a) triangular meshes, (b) mixed triangular-quadrilateral meshes, and
(c) polygonal meshes.

(a) triangular meshes

Mesh res. Tri

h 792

h/2 3168

h/4 12672

h/8 50688

(b) mixed tri/quad meshes

Mesh res. tri quad Total

h 122 335 457

h/2 354 1407 1761

h/4 870 5901 6771

h/8 1902 24393 26295

(c) polygonal meshes

Mesh res. quad pentagon hexagon heptagon octagon Total

h 2 88 327 14 2 433

h/2 2 160 1479 14 2 1657

h/4 2 304 6159 14 2 6481

h/8 2 592 25023 14 2 25633

of a triangular mesh resulting from applying regular refinement to the given triangular element. The quadrilateral

meshes at the so-calledh/2 j-resolution is hence defined from theh/2 j−1- triangular mesh. Note that, at the same mesh

resolution, the number of elements in the quadrilateral mesh is 3/4 of that in the triangular mesh.

In the numerical calculations, the parameters in the RKF45 time integrator are set toεr = 1×10−6 andεa = 1×10−9.

The integration is carried out until reachingt f = 97200. For the PNDG scheme, the polymorphic bases withpd = 1

are utilized for quadrilateral elements. For polygonal meshes, we consider a strategy, employed by [15] to solve the

compressible Navier-Stokes equations, in defining a set of nodal points for the polymorphic bases. This strategy uses

(22) withrmax(instead ofpd) as a free parameter in defining the nodal set of the elements whose the nodal sets obtained

usingpd = 1 contain less than or equal to a single nodal point in the interior. More specifically, for such elements,

their associated nodal sets are defined as those obtained by adjusting the parameterpd in (23) so thatrmax = 1 and in

additionp− (Ngon− pd) > 0 for p ≥ 3. This strategy ensures the existence of interior nodes forall elements. We find

that this strategy yields noticeably more accurate approximate solutions than the strategy using the fixed valuepd = 1

(at least two times more accurate in theL2-norm for p ≥ 3).

Table 9 tabulates the normalizedL2 errors in the total water column heightHh at the final time of simulationt f . As

presented in the previous section, data are grouped according top. In each group, we highlight the combination of DG

basis and the mesh configuration that overall yields the mostaccurate solutions. The results for other combinations are

tabulated as the ratio of the error from the specific scheme tothe error associated with the most accurate scheme. The

last column in this table reports the numerical order of convergence of each DG scheme. All DG schemes, regardless

of bases or mesh configurations, converge approximately at the rate ofO(hp+1) for the total water column height

Hh. It can be observed that the NDG scheme on quadrilateral meshes yields the most accurate solution among the

combinations of bases and mesh configurations. The PNDG scheme on mixed meshes are less accurate than the other

schemes. The data from the calculation on the mixed meshes indicates, as expected, that the less accurate element

type dictates the error levels. More precisely, it can be observed that the PNDG solution on mixed meshes is less

accurate in comparison to the PNDG solution on triangular meshes; their error ratios drift further apart asp increases.

This clearly reflects the effect of using the less accurate quadrilateral polymorphic elements. On similar resolution,
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Table 9: DG solutions on unstructured meshes. NormalizedL2 errors inHh, EH ≡ |Ω|−1/2‖H − Hh‖Ωh of the overall most accurate scheme for a
given orderp, error ratios (specific scheme relative to the most accuratefor that p), and rate ofh-convergence. A code [ppmn] denotes the DG
method preceding it.

DG bases & mesh p
EH in [ppmn]
EH in [ppm1]

on
h
2q

-mesh
h-conv. rate

h h/2 h/4 h/8

NDG quad [p1m1] 1 1.02e-03 2.12e-04 4.91e-05 1.21e-05 2.13

1.00 1.00 1.00 1.00 2.13

PNDG quad [p1m2] 1 0.90 1.12 1.25 1.28 1.96

PNDG ngon [p1m3] 1 1.09 1.24 1.30 1.30 2.08

NDG tri [p1m4] 1 1.02 1.27 1.38 1.40 1.98

PNDG tri [p1m5] 1 1.02 1.27 1.38 1.40 1.98

PNDG mixed [p1m6] 1 1.40 1.47 1.56 1.67 2.10

NDG mixed [p1m7] 1 1.43 1.47 1.57 1.67 2.11

NDG quad [p2m1] 2 3.56e-05 3.23e-06 3.85e-07 4.42e-08 3.20

1.00 1.00 1.00 1.00 3.20

NDG tri [p2m2] 2 1.18 1.28 1.30 1.52 3.09

PNDG tri [p2m3] 2 1.18 1.28 1.30 1.52 3.09

NDG mixed [p2m4] 2 2.33 2.21 2.10 2.44 3.28

PNDG quad [p2m5] 2 2.87 2.88 2.29 2.02 3.39

PNDG ngon [p2m6] 2 1.87 2.66 2.88 3.19 3.02

PNDG mixed [p2m7] 2 3.84 4.06 3.60 3.55 3.34

NDG quad [p3m1] 3 1.95e-06 1.10e-07 6.13e-09 3.02e-10 4.21

1.00 1.00 1.00 1.00 4.21

NDG tri [p3m2] 3 1.45 1.50 1.54 1.90 4.09

PNDG tri [p3m3] 3 1.45 1.50 1.54 1.91 4.09

PNDG quad [p3m4] 3 2.00 1.89 1.80 2.08 4.20

NDG mixed [p3m5] 3 2.08 2.13 2.07 2.37 4.27

PNDG ngon [p3m6] 3 1.89 2.16 2.53 3.27 4.03

PNDG mixed [p3m7] 3 8.07 8.35 9.71 12.65 4.10

NDG quad [p4m1] 4 8.00e-08 2.48e-09 7.92e-11 4.99

1.00 1.00 1.00 4.99

NDG tri [p4m2] 4 1.36 1.34 1.64 4.85

PNDG tri [p4m3] 4 1.52 1.39 1.65 4.93

PNDG quad [p4m4] 4 2.18 1.78 1.75 5.15

NDG mixed [p4m5] 4 2.36 2.09 2.50 5.09

PNDG ngon [p4m6] 4 2.73 2.41 2.40 5.21

PNDG mixed [p4m7] 4 14.28 10.98 8.92 5.48
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the NDG scheme on a mixed mesh, within the range ofp tested, yields a less accurate solution than the schemes on

triangular meshes; however, their accuracies overall appear to be closer asp increases. This indicates that the error

levels in the NDG solutions on mixed meshes is strongly dictated by the presence of triangular nodal elements.

Figures 10(a)-(f) show, on a log-log scale, the accuracy ofHh through theL2 error versus the computing times

required in the simulations. Each curve represents data from the DG solution with a givenp on various mesh resolu-

tions. See the legends accompanying the plot for the combinations of DG basis, mesh configuration, and interpolation

degreep with which the curves are associated. Additionally, in eachfigure, the data from the PNDG scheme on

triangles is plotted for comparison purposes. As the curvesappear as straight lines, the cost functions are well ap-

proximated byTc = c2(EH)s2. Table 10 tabulates the constant pairs (c2, s2) of the cost function associated with the

DG schemes tested. Roughly speaking, the computational costs of the DG schemes are proportional approximately to

E−2.7/(p+1)
H .

Table 10: DG solutions on unstructured meshes. Constant andrate (c2, s2) in the cost functionsTc = c2(EH )s2 .

DG bases & mesh
Cost coefficients (a, s)

p = 1 p = 2 p = 3 p = 4 p = 5

NDG tri (0.04,-1.42) (0.14,-0.90) (0.38,-0.68) (0.43,-0.56) (1.32,-0.45)

NDG quad (0.07,-1.32) (0.16,-0.88) (0.42,-0.67) (0.52,-0.56) (1.11,-0.47)

NDG mixed (0.05,-1.37) (0.26,-0.86) (0.58,-0.65) (0.72,-0.54) (1.18,-0.46)

PNDG tri (0.03,-1.42) (0.13,-0.89) (0.43,-0.65) (0.49,-0.54) (0.91,-0.45)

PNDG quad (0.02,-1.41) (0.52,-0.81) (0.52,-0.64) (0.73,-0.52) (1.51,-0.43)

PNDG mixed (0.04,-1.37) (0.36,-0.84) (0.67,-0.67) (1.78,-0.51) (3.75,-0.42)

PNDG ngon (0.05,-1.34) (0.18,-0.90) (0.48,-0.66) (1.03,-0.52) (2.69,-0.44)

To examine the effect of p from a cost per accuracy perspective, we evaluate from the derived cost functions the

computing cost required to achieve the specified error levels ε. Table 11 tabulates these data for each DG solution

on unstructured meshes. Note that the number inside the parenthesis corresponds to the computational cost ratio

of the estimated runtime of the (p − 1) scheme to that of thep scheme for the identical accuracy level. In other

words, it reflects the gain in cost efficiency achieved by increasing the interpolation order by one. The data, which

exhibits a similar trend to the DG solutions on regular meshes, clearly show the benefit of using the higher order

schemes. More precisely, to achieve a specified level of accuracy, the computational cost required for the high order

scheme is considerably less than that required for the scheme with p = 1. As an example, for a specified accuracy

of ε = 1.0× 10−5 or 1.0× 10−7), the computational cost of the schemes withp = 3 are typically three to four orders

of magnitude lower than the schemes withp = 1. The computational cost for a specified level of error decreases as

the interpolation orderp used in the scheme increases; however, the benefit gain from raising the interpolation order

p eventually diminishes as indicated by the reduction in the cost ratios. Although the scheme withp = 2 exhibits the

highest cost reduction from the perspective of comparing the cost required in the scheme withp to that required in the

scheme withp− 1, the use of schemes withp = 3 appears, to some extent, to be more appealing in the sense that the

scheme yields significant gains in performance over the scheme with p = 1 while still showing relatively large gains

when compared to the scheme withp = 2.

Table 12 compares the cost for a given accuracy level from thedifferent DG schemes. In this table, the results of

the NDG scheme on triangles are highlighted in the gray box. The results of the other schemes are reported as a ratio

of the estimated time of the specific scheme to that of the NDG scheme on triangles for the same interpolation orderp

(the higher the ratios, the higher the computational cost required to achieve a specified level of accuracy in comparison
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Figure 10: Normalized errors|Ω|−1/2‖H − Hh‖Ω at t f = 97200vs. computing times (in seconds) in DG solutions on unstructured meshes. Solid
lines represent the data of (a) PNDG on quad meshes, (b) NDG onquad meshes, (c) PNDG on mixed tri-quad meshes, (d) NDG on mixed tri-quad
meshes, (e) PNDG on polygon meshes, and (f) NDG on tri meshes.Dash lines in (a)-(d) represent the data of PNDG on triangles: −⋄− p = 1,−◦−
p = 2,−�− p = 3,−▽− p = 4, and−△− p = 5.
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Table 11: DG solutions on unstructured grids. Computing time Tε
c (in seconds) required to achieve a given level of errorε in Hh. A numeric value

in the parenthesis denotes the ratio betweenTε
c of a DG scheme with interpolation orderp− 1 and that ofp.

DG bases p Computing timeTε
c

& mesh ε = 5.0e-04 ε = 1.0e-05 ε = 1.0e-07 ε = 1.0e-09

NDG tri

1 1898 488329 3.359e+08 2.311e+11

2 134(14.1) 4548(107.4) 287597(1168.0) 1.819e+07(12704.5)

3 64(2.1) 910(5.0) 20509(14.0) 462393(39.3)

4 31(2.1) 283(3.2) 3788(5.4) 50687(9.1)

5 39(0.8) 223(1.3) 1736(2.2) 13496(3.8)

NDG quad

1 1550 269879 1.172e+08 5.092e+10

2 124(12.5) 3848(70.1) 218479(536.6) 1.240e+07(4104.7)

3 66(1.9) 890(4.3) 19022(11.5) 406775(30.5)

4 36(1.8) 322(2.8) 4225(4.5) 55453(7.3)

5 38(0.9) 238(1.4) 2040(2.1) 17464(3.2)

NDG mixed

1 1641 352711 1.964e+08 1.093e+11

2 175(9.4) 5019(70.3) 261323(751.4) 1.361e+07(8033.4)

3 78(2.2) 975(5.1) 19015(13.7) 370794(36.7)

4 44(1.8) 360(2.7) 4312(4.4) 51679(7.2)

5 37(1.2) 225(1.6) 1875(2.3) 15628(3.3)

PNDG quad

1 1040 256843 1.683e+08 1.103e+11

2 239(4.4) 5603(45.8) 230058(731.6) 9445666(11677.9)

3 68(3.5) 826(6.8) 15740(14.6) 299839(31.5)

4 38(1.8) 292(2.8) 3202(4.9) 35154(8.5)

5 41(0.9) 219(1.3) 1573(2.0) 11289(3.1)

PNDG mixed

1 1237 262204 1.436e+08 7.866e+10

2 218(5.7) 5886(44.5) 284620(504.6) 1.376e+07(5715.3)

3 109(2.0) 1494(3.9) 32705(8.7) 716092(19.2)

4 84(1.3) 606(2.5) 6252(5.2) 64476(11.1)

5 85(1.0) 467(1.3) 3459(1.8) 25637(2.5)

PNDG polygon

1 1356 252596 1.188e+08 5.584e+10

2 164(8.3) 5511(45.8) 345118(344.1) 2.161e+07(2583.7)

3 75(2.2) 1012(5.4) 21551(16.0) 458959(47.1)

4 54(1.4) 411(2.5) 4523(4.8) 49727(9.2)

5 53(1.0) 346(1.2) 3119(1.5) 28132(1.8)
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Table 12: DG solutions on unstructured meshes. Computing timesT p,ε
c for a specified level of errorε in Hh of the PNDG triangular solution with

a givenp and time ratios (given schemes relative to the PNDG scheme ontriangles for thatp). A code [mn] denotes the DG scheme preceding it.

T p,ε
c of [mn] / T p,ε

c of [m1]

DG bases & mesh p = 1 p = 2 p = 3 p = 4 p = 5

ε = 2.0e-04 ε = 1.0e-06 ε = 1.0e-07 ε = 1.0e-08 ε = 1.0e-09

NDG tri [m1] 6964 36165 20509 13857 13496

NDG quad [m2] 0.75 0.80 0.93 1.10 1.29

NDG mixed [m3] 0.83 1.00 0.93 1.08 1.16

PNDG tri [m4] 0.81 0.76 0.74 0.77 0.78

PNDG quad [m5] 0.54 0.99 0.77 0.77 0.84

PNDG mixed [m6] 0.62 1.13 1.59 1.45 1.90

PNDG ngona [m7] 0.66 1.21 1.05 1.08 2.08
a Polygon elements withrmax = 1.

to the PNDG scheme on triangles). It is noticed that the PNDG scheme on mixed meshes, which is the fastest scheme,

is less efficient than other schemes from a cost per accuracy performance perspective. This indicates that the gain

in computing time achieved by introducing quadrilateral elements in the PNDG scheme is not enough to offset the

loss of accuracy. The NDG scheme on mixed elements exhibits approximately the same cost performance as the

NDG scheme on triangular elements for the ranges of interpolation orderp tested. The NDG scheme on quadrilateral

meshes, which yields the most accurate solution, performs slightly better than the NDG schemes on triangular meshes

for p ≤ 3. Note that, on the same mesh resolution, the wall clock times of the quadrilateral NDG scheme are higher

than that of the triangular DG scheme forp2; for p = 1, the quadrilateral NDG scheme runs slightly faster than the

triangular NDG scheme (this behavior reflects the fact that,for the considered mesh setting, the total DOFs of the

quadrilateral NDG solution is higher than that of the triangular DG solution forp ≥ 2). This suggests that the element

size transition play a role in obtaining a full benefit of the tensor-product quadrilateral elements. It can be seen from

Table 12 that the PNDG scheme on triangles exhibits higher cost-per-accuracy performance than the NDG scheme on

triangles. This stems, however, from the fact that the RKF45time integrator employ larger values of∆t for the PNDG

solution on triangles, thus resulting in faster runtimes and higher performance. We note that the PNDG scheme and

NDG scheme on triangles show similar performance when usingthe SSPRK4 time integrator with the time step size

being selected based on the CFL-type condition.

As indicated by the numerical results reported above and in the previous section, we note that the high order

schemes offer significant benefits in terms of cost per accuracy. Although the considered choices of DG polynomial

bases and element shapes have an implication on the numerical performance, their impact are not as noticeable in

comparison to the use of a high-order scheme.

4.3. Nonlinear Stommel problem

We note that realistic scenarios of coastal flow problems usually involve a number of factorse.g., spatially varying

bathymetry, curved boundaries, bottom friction, surface wind stress. In this section, we apply the DG schemes to

the nonlinear Stommel problem. Although it is relatively simple, the Stommel problem contains a number of phys-

ical processes encountered in the realistic application ofSWE and serves as a good prototype for ocean circulation

problems.

The so-called nonlinear Stommel problem [7, 36] modifies theStommel problem [37] by including the nonlinear

32



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

advective term. More precisely, we consider the flow problemgoverned by the SWE (1) in a rectangular ocean basin

of [0, L]2 with source terms that include Coriolis force, surface windstress, and linear bottom friction,i.e.,

Fx = f vH +
τsx

ρ0
− γuH, Fy = − f uH +

τsy

ρ0
− γvH (41)

where f denotes the Coriolis parameter, (τsx, τsy) represents the surface wind stress,ρ0 is the water density, and the

constantγ is the bottom friction coefficient. The Coriolis parameter is taken asf (y) = f0 + β(y− L/2) and the wind

stress as

τsx = −τ0 cos
(
πy
L

)
, τsy = 0. (42)

Note that (42) is a simple form of the surface stress associated with the Trades and Westerlies [37]. At the basin

boundaries, we consider the no-normal boundary condition

u · n = 0. (43)

The no-normal flow condition is imposed weakly using an implementation given in Appendix Appendix C.

In the numerical simulations, the values of parameters are as follows:L = 106, zb0 = 1000 m,f0 = 10−4, β = 10−11

1/m, g = 10 m/s2, ρ0 = 1000 kg/m3, τ0 = 0.2 N/m2, andγ = 2× 10−6 (except for the value ofγ, these parameters are

identical with those employed in [36]). The steady state is declared when the difference between the solution at time

level t = (n+ 1)δ f and att = nδ f are sufficiently small, more specifically,

‖H(x, (n+ 1)δ f ) − H(x, nδ f )‖∞ < εs, n ∈ N. (44)

Here, the condition above is checked everyδ f = 7200 s and unless otherwise indicatedεs = 5× 10−6. The numerical

calculations are initiated with quiescent flow

H(x, 0) = zb0, (uH)(x, 0) = 0. (45)

Here, the Stommel problems with a flat and non-flat bathymetryare considered. Results for the test problem with flat

bathymetry are presented in the following subsection. Subsequently, in subsection 4.3.2, we report numerical results

for the non-flat bathymetry problem. We also discuss in subsection 4.3.2 issues concerning a preserving-still-water

property (also known as the well-balanced property) of the DG schemes for a problem with non-flat bathymetry.

4.3.1. Flat bathymetry problem

For the flat bed problem, we consider the ocean basin with a bathymetric depthzb = zb0 = 1000 m. We examine

the numerical performance of the NDG scheme on rectangles and on triangles. For brevity, we present only the results

from the NDG scheme on rectangles. We consider five sequentially refined meshes of uniform rectangular elements;

the coarsest mesh consists of 5× 5 rectangles (∆x = ∆y = L/5) and the finest mesh consists of 80× 80 rectangles

(∆x = ∆y = L/80). We conduct the study for the NDG scheme withp = 1, 2, and 3. The values of (εr , εa) in the

RKF45 time integrator are set to (7.5×10−6, 1×10−9). It is noted that the time-independent linear Stommel problem has

an exact solution (see [37, 7, 36]). However, there is no exact solution to the nonlinear Stommel problem. To measure

errors in the numerical solutions, we use the approximate solution obtained from a high-resolution calculation, more

precisely, from the DG scheme withp = 7 on the 10× 10 rectangular mesh and (εr , εa) = (1× 10−7, 1× 10−12), as a

reference solution.

Figure 11 plots the free surface elevationζ = H−zb (left column) and the velocity magnitude|u| =
√

u2 + v2 (right
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column) at steady state. The result shown in Figure 11(a) is obtained from the scheme withp = 1 (bi-linear element)

on the mesh of 20× 20 rectangles and in Figure 11(b) from a scheme withp = 2 (bi-quadratic element) on a mesh

of 10× 10 rectangles. It can be observed that the results from thesetwo simulations qualitatively agree well with the

reference solution shown in Figure 12. Note that, for most calculations, the steady state is reached at approximately

t = 84.8 days (we intentionally use a larger value of the bottom friction coefficientγ than that used in [7, 36] so that the

steady state is reached at an earlier time). Figure 13 plots,on a log-log scale, errors in the approximate solutionHh

(a) Steady state solution,p = 1, 20× 20 rectangular elements
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(b) Steady state solution,p = 2, 10× 10 rectangular elements
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Figure 11: The free surface elevationζ = H−zb (left) and the velocity magnitude|u| =
√

u2 + v2 (right) at the steady state of the nonlinear Stommel
problem obtained from the nodal DG scheme on rectangles. (a)Solution from usingp = 1 on the mesh of 20× 20 rectangles; (b) solution from
usingp = 2 on the mesh of 10× 10 rectangles.

and (uH)h through theL2 norm against the element sizes. In the plots, the element sizes are measured through
√

Nel

and the values of errors are normalized by‖Zb‖2. A slope of each log-log plot, which indicates an overall numerical
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Figure 12: Reference solution of the nonlinear Stommel problem. The free surface elevationζ = H − zb (left) and the velocity magnitude
|u| =

√
u2 + v2 (right).

order of convergence, is reported to the right of the subfigures. Forp > 1, the numerical solution exhibits an order of

convergence typically close top+ 1/2 in theL2-norm.

Figure 14 shows, on a log-log scale, computing times plottedagainsth−1
⋍
√

Nel. On a given mesh, computing

times increase with the interpolation orderp, as expected. It can be noticed that the log-log plots appearas straight

lines; this implies that the computing time behaves approximately likechs with respect to element size. The numerical

rates is approximately−3 and appears to be independent ofp (the constantc, as expected, depends onp). Figure

15 depicts, on a log-log scale, the normalizedL2 error in Hh as a function of computing time. Each curve shows a

relation between the computing cost and accuracy of the DG solution with a given orderp. Since the log-log plots

appear approximately as straight lines, the cost functionscan therefore be well approximated byTc = c2(EH)s2 (with

s2 ≈ −3/(p+ 1)). More precisely, the cost functions for the total water column heightH are as follows

Tc = c2(EH)s2, with (logc2, s2) =



(−10.18,−1.40), for p = 1

(−9.60,−1.05) , for p = 2

(−7.68,−0.84) , for p = 3

(46)

whereEH represents the error inHh in the L2 norm normalized by‖zb‖2. In Table 13, we tabulate from (46) the

computing times for different error levels. The value inside a parenthesis is a ratiobetween the cost of the scheme

with p− 1 to that ofp. It can be seen that the high order scheme shows a clear advantage over the scheme withp = 1

from the cost per accuracy aspect. For instance, at the errorlevel of 1× 10−7 or 5× 10−7, the computational cost in

the DG solution withp = 3 is about three orders of magnitude lower than the DG solution with p = 1. All these

convergence and cost per accuracy analyses show similar behavior to the manufactured solution problem presented in

Section 4.2.

We also report in Table 13 the data that comes from the cost functions of the NDG solution on triangles (the

triangular meshes considered are built in a way similar to those described in Section 4.2.1,i.e.,by bisecting rectangular

elements of the rectangular elements). It can be observed that the scheme on rectangles has lower costs per accuracy

(ranging approximately from 1.3 to 2.5 times lower) than the NDG solution on triangles. We note thenumerical order
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(a) Accuracy inHh
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Figure 13: Error and convergence rate in the approximate solution at steady state for the nonlinear Stommel problem. (a)The normalizedL2-
error in the total water column‖Href − Hh‖2/‖zb‖2 as a function ofh−1

⋍
√

Nel; (b) The normalizedL2 error in thex-directed water discharge
‖(uH)ref − (uH)h‖2/‖zb‖2 as a function ofh−1

⋍
√

Nel.

Table 13: Nonlinear Stommel problem. Computing timeTε
c required to achieve a specified level of error inHh of the nodal DG solution on

rectangles and on triangles. A numeric value in the parenthesis is the ratio betweenTε
c of a scheme withp− 1 and that ofp.

Scheme p
Computing timeTε

c ≡ Tc(ε)

ε = 1e-06 ε = 1e-07 ε = 5e-08 ε = 2.5e-09

NDG quad

1 8903.63 221114.35 581525.45 37981329.79

2 133.72(66.58) 1497.62(147.64) 3099.16(187.64) 71826.86(528.79)

3 49.08(2.72) 337.61(4.44) 603.31(5.14) 7416.56(9.68)

NDG Tri

1 17228.01 462327.69 1244617.57 89915965.39

2 402.83(42.77) 3673.19(125.87) 7145.11(174.19) 126735.88(709.48)

3 88.55(4.55) 530.26(6.93) 908.80(7.86) 9326.77(13.59)
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Figure 14: Nonlinear Stommel problem: wall clock time as a function ofh−1
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Figure 15: Nonlinear Stommel problem: error‖Href − Hh‖2/‖zb‖2 as a function of the wall clock time.

of convergence inH of the NDG scheme on triangles is slightly higher than that ofthe scheme on rectangles (the

opposite of the convergence rate inuH andvH); on the same so-called mesh resolution, the scheme on rectangles is

faster than the scheme on triangles for allp considered.

4.3.2. Non-flat bed Problem

4.3.2.1. Preserving still water flow.One concern of DG or other methods that are based on the conservative form of

shallow water equations involves their ability to preservethe state at rest solution

u(x) = 0 and ζ = H(x) − zb(x) = C, (47)
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whereζ denotes the surface elevation andC is a constant value, in the time marching process. Note that atypical

problem that admits (47) as a solution is flow in an enclosed basin in the absence of wind forcing term. Schemes that

preserve such the state,i.e. ζh remains constant anduh remains zero at all time, are called a well-balanced scheme

[16, 17]. To obtain a well-balanced property, numerical schemes are devised so that the right-hand-side terms vanish

for a given approximate solution of the state at rest solution.

Here, we provide a treatment for obtaining the well-balanced property in the scheme using the nodal basis and

conforming mesh and order (although not discussed here, we note that this treatment is also directly applicable to

some modal-based DG schemes). The approximate solution discussed below, unless specified, is associated with the

steady state at rest solution (47). We also assume here that the bathymetryzb is continuous. In this treatment, the

bathymetry is replaced by an interpolant of degree identical to the nodal basis considered. More precisely, when

employing the nodal basis of degreep, the bathymetry in the elementK is approximated by the interpolant of degree

p, namely,

zb(x) ≈ zh,b ≡ (Izb) =
Mp∑

m=1

zb(xm)φm(x), (48)

where, as a reminder,φm denotes nodal basis functions,xm the location of nodal points, andMp denotes the number

of nodal points. Adopting (48) leads toHh − zh,b = C for all x ∈ K (as a reminder,Hh is the interpolantH and in

this caseH = C − z). For continuouszb, the approximate bathymetryzh,b is piecewise continuous; this results in a

single-valuedHh on the element interfaces. Substituting the approximate solution q∗h = (Hh, (uH)h = 0) andzb,h into

the DG-SWE weak formula yields the following right hand sideterm

r =



0
∫

K

1
2

gH2
h

∂vh

∂x
dx −

∫

∂K

F̂∗2 · nvhds+
∫

K

gHhvh
∂zh,b

∂x
dx

∫

K

1
2

gH2
h
∂vh

∂y
dx −

∫

∂K

F̂∗3 · nvhds+
∫

K

gHhvh
∂zh,b

∂y
dx



, (49)

for all vh ∈ Pp(K), whereF̂∗2.n = (1/2)gH2
hnx and F̂∗3.n = (1/2)gH2

hny are the normal numerical fluxes for thex-

andy- momentum equations evaluated atq∗h, respectively. It can be verified by integrating by-parts the first term

of (49) and usingHh = C − zh,b that the right hand side termr vanishes, thus yielding a well-balanced property.

Note that it is assumed here that the bathymetry has no discontinuity. We refer to approaches in [18, 20, 11] for

handling the discontinuous bed. Note that the approaches devised in [18] and [20] use theL2-projection onPp(K) to

approximate the bathymetry in each element. Generally, this results in a discontinuous approximate bed. The well-

balanced property in these approaches are accomplished through the modified numerical fluxes that are based on the

hydrostatic reconstruction technique [17].

Note that, the integral formula (49) must be computed exactly in a numerical realization to obtain the well balance

property. For triangular elements (tensor product rectangle elements), this can be done by using quadrature rules

that integrate exactly the polynomials of degree 3p − 1 (3p) for the volume integral terms and 3p (3p) for the edge

integrals (note that the values in the parentheses are for the tensor-product rectangular elements). It can be checked

that the nodal-integration procedure described in section3.1 does not meet this requirement, thus rendering the NDG

scheme non well-balanced (see numerical results below). Wefind that one can reduce the order of quadrature required

in the numerical implementation, which implies less computational work, by considering the widely-used equivalent
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alternative form of the SWEs [3, 5], more precisely, considering (1) with

q =



ζ

uH

vH



, f =



uH

u2H +
1
2

g(H2 − z2
b)

uvH



, g =



vH

uvH

v2H +
1
2

g(H2 − z2
b)



,

and s=



0

gζ
∂zb

∂x
+ Fx

gζ
∂zb

∂y
+ Fy



,

(50)

whereζ = H − zb denotes the surface elevation. It can be shown that, with this alternative form of the SWE, the

associated DG weak formula with the approximate bathymetry(48),uh = 0, ζh = C, and (H2
h−z2

h,b) = C(Hh+zh,b) can

be computed exactly by using the quadrature rules that integrate exactly polynomials of degree up to 2p− 1 (2p) for

the volume integrals and up to 2p (2p) for the edge integrals when the triangular elements are considered (the values

in the parentheses are for the tensor-product rectangular elements). In other words, the quadratures of such accuracies

are sufficient in order to achieve the well-balanced property. Note that the quadratures required are less accurate than

those required in the formula associated with the SWE form of(2). In addition, it can be verified that the NDG scheme

with the nodal-integration approach is well-balanced when(50) is considered.

To examine the well-balanced property, we consider a rectangular enclosed basin of [0, L]2, L = 106, with the

bathymetry

zb =
3zb,0

4
+

zb,0

4
tanh


√

2
4× 105

(
−x+ y− L

5

) , (51)

wherezb,0 = 1000 and the state at rest as the initial condition

ζ(x, t = 0) = H(x, t = 0)− zb(x) = ζ0, uH = 0. (52)

whereζ0 = 1/4. In this study, we include the Coriolis force and a linear bottom friction term; surface wind stress is

excluded. The values of the physical parameters are identical to those listed in Section 4.3.

Below, we report the results obtained by utilizing three different ways in realizing the integrals in the DG weak

formula based on the nodal basis expansion on triangular elements. The first approach (M1) considered is the NDG

scheme. This scheme, as a reminder, uses the nodal-integration approach for realizing the integration terms (see

section 3.1). The second and third approaches use the quadrature formula in evaluating the integrals. In the second

approach (M2), the area integrals are computed by means of a quadrature rule that integrates exactly polynomials

of degree up to 2p and the edge integrals are evaluated by a quadrature rule that integrates exactly polynomials of

degree up to 2p + 1. The third approach (M3) employs quadrature rules that integrate polynomials of degree up to

3p − 1 for an area integration and up to 3p for an edge integration. Note that, in the M2 and M3 approaches, we

use the cubature rules provided in [38] for the area integration over a triangle and use the classical one-dimensional

Gauss quadrature rule for the edge integration. For brevity, the SWEs with (2) is termed theH-form SWE and the

SWE with (50) theζ-form SWE. The numerical solutions are computed on a triangle mesh consisting of 800 elements

constructed by bisecting a uniform grid of 20× 20 points. We use the RKF45 time integrator with the tolerance

εr = 5 × 10−7, εa = 5 × 10−12. The calculations are performed untilt = 10 days (86400 s) is reached. Table 14
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tabulates the absolute maximum errors at the nodes in the total water columnHh and thex-directed discharge (uH)h

at t = 10 days. It can be clearly observed from this table that, in the H-form SWEs, the M3 approach exhibits the

Table 14: Well-balanced test. Absolute maximum errors at the nodes inHh and (uH)h at t = 10 days.

p
‖H − Hh‖l,∞ ‖uH − uHh‖l,∞

M1 M2 M3 M1 M2 M3

ζ-form

1 1.137e-13 2.274e-13 2.274e-13 3.759e-11 1.263e-10 1.263e-10

2 2.274e-13 3.411e-13 3.411e-13 4.104e-10 5.713e-10 5.649e-10

3 4.548e-13 5.684e-13 7.958e-13 3.175e-09 5.500e-09 1.050e-08

4 7.958e-13 2.274e-12 1.251e-12 8.579e-09 1.914e-08 2.034e-08

H-form

1 3.410e+00 1.211e-11 1.211e-11 2.809e+07 1.568e-08 1.568e-08

2 9.386e-02 9.997e-04 7.969e-11 2.497e+01 2.884e-01 2.269e-07

3 3.359e-03 1.984e-05 4.940e-10 9.260e-01 1.789e-02 3.385e-06

4 1.678e-04 2.104e-06 6.096e-10 6.978e-02 1.784e-03 6.308e-06

M1 - NDG scheme; M2 - nodal basis, quadrature rules (2p,2p+ 1);

M3 - nodal basis, quadrature rules (3p− 1,3p)

well-balanced property; the NDG scheme (M1) is not well-balanced and in fact it yields poor results especially for

low orderp. For theζ-form SWEs, all three approaches exhibit the well-balancedproperty of the state at rest solution.

This indicates that the well-balanced property can be obtained with less computationally expensive realizations in the

ζ-form SWEs. These observations on the numerical results verify the discussion above on the well-balanced issues.

4.3.2.2. Stommel problem with linear bed.We consider a problem described in Section 4.3 with a linear bathymetric

profile

zb =
zb,0

2

[
1− 1

2L
( − x+ (y− L)

)]
(53)

wherezb,0 = 1000. Note that the deepest and shallowest points of the basin are at the southeast and northwest corners,

respectively. In the calculations, we use identical meshesand parameters employed in the flat bathymetry test case

(see Section 4.3.1). Theζ-form of SWE is considered in the study below and, unless otherwise indicated, we note that

results reported below are of this SWE form.

We first examine whether the approximate solutions evolve tothe steady state at rest when the effect of surface

wind stress is removed after a certain time. Here, we consider the case where the surface wind stress is given by

τsx = −
1
2

tanh

(
t − Ts

Tr

)
cos

(
π

y
L
)
, τsy = 0, Ts = 8 days, Tr = 0.5 days. (54)

The effect of the wind forcing term begins subsiding aroundt = 7.5 days and is completely absent for larget. The

integration is started with the initial condition (52) and is carried out until reaching steady state ort = 150 days,

whichever comes first. The steady state is declared based on the criteria (44) withεs = 10−8. We use the triangular

mesh of 200 elements, which is built from the 10× 10 uniform grid, in the calculation. Table 15 tabulates absolute

maximum values at the nodes in the steady state solution fromusing different realizations of the nodal-basis based DG

scheme (see the previous section for the description of the implementation). We note that all three approaches yield

steady state solutions approximately att = 128 days. The result demonstrates that the less expensive realizations (M1

and M2 approaches) do not deteriorate the quality of the solution that evolves to the steady state at rest solution.
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Table 15: Nonlinear Stommel problem with linear bed and (54)surface wind stress. Absolute maximum at the nodes of surface elevation and
x-directed discharge at steady state.

p
‖ζh‖l,∞ ‖uHh‖l,∞

M1 M2 M3 M1 M2 M3

1 7.517e-08 7.394e-08 7.394e-08 5.121e-06 4.643e-06 4.640e-06

2 7.885e-08 7.474e-08 7.475e-08 6.841e-06 6.858e-06 6.858e-06

3 8.001e-08 7.579e-08 7.579e-08 7.363e-06 7.357e-06 7.357e-06

7 7.964e-07 7.560e-08 7.560e-08 7.809e-06 7.792e-06 7.793e-06

M1 - NDG scheme; M2 - nodal basis, quadrature rules (2p,2p+ 1);

M3 - nodal basis, quadrature rules (3p− 1,3p)

Subsequently, we consider the problem with the persistent surface wind stress (42) and consider theζ-form SWE.

Here, we focus mainly on examining numerical performance ofthe NDG scheme (M1 scheme). Figure 16 illustrates

the approximate solutionζh and (uH)h at steady state obtained using the rectangular elements. Figures 16(a) shows

the solution usingp = 1 on the mesh of 80× 80 elements and Figure 16(b) the solution usingp = 8 on the mesh of

10× 10 elements. Note that the steady state is declared when the criteria (44) withεs = 10−8 is satisfied. It can be

seen that, a center of circulation is near the southwest corner of the basin and water piles up in the vicinity of such a

circulation center. The steady state is reached at approximatelyt = 103 days for most calculations. Note that, in the

calculations on coarse triangular meshes and highp (p ≥ 7), the NDG scheme fails to yield a steady state solution.

We believe this is due to aliasing errors. Applying a mild spectral filter [25] appears to resolve this instability issue.

Note that we do not see such an instability issue in the M2 and M3 approaches which utilize the quadrature rules in

realizing the DG weak formula.

In assessing the numerical performance, the calculations are carried out untilt = 12 days and unless otherwise

indicated numerical results discussed below are the results at this specific time. The tolerance (εr , εa) in the RKF45

time integrator are set to (7.5 × 106, 1 × 10−9) in the calculations. As done in the flat-bathymetry case, weuse the

approximate solution from a high-resolution calculation as a reference solution. More specifically, the approximate

solution from the NDG scheme withp = 7 on the 10× 10 rectangular mesh and (εr , εa) = (1 × 10−7, 1 × 10−12)

is used as the reference solution for assessing numerical performance. For brevity, we present, unless specified, the

results from the NDG scheme on triangles. Figure 17 plots, ona log-log scale, errors inζh and (uH)h through the

L2-norm against the element sizes measured by
√

Nel. Note that the values of errors in these plots are normalizedby

‖zb‖2. Overall numerical orders of convergence are reported in the tables to the right of each subfigures. We note that

the numerical solution converges at the rate close top + 1/2. Figure 18 plots, on a log-log scale, wall-clock times

as a function ofh−1
⋍
√

Nel. The value of overall slope of each curve, which appears to beindependent ofp, is

approximately 3. Figure 19 shows the log-log plots of the normalizedL2 errors inζh against the wall clock times. The

plots appear approximately as straight lines in the log-logscale; this indicates that the relation between the computing

cost and the accuracy can be approximately described byT = c2(Eh)s2, with s2 ≈ −3/(p+ 1/2). More precisely, the

cost functions for a given level of accuracyEh in the surface elevationζh are approximately as follows

Tc = c2(Eζ)s2, with (logc2, s2) =



(−12.36,−1.54), for p = 1

(−10.18,−1.12), for p = 2

(−8.09,−0.90) , for p = 3

. (55)
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(a) p = 1, 80× 80 rectangular mesh
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(a) p = 8 on 10 rectangular mesh
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Figure 16: The free surface elevationζ = H−zb (left) and the velocity magnitude|u| =
√

u2 + v2 (right) at the steady state of the nonlinear Stommel
problem with linear bathymetry obtained from the NDG scheme. (a) Solution from usingp = 1 on the mesh of 80× 80 rectangular elements; (b)
solution from usingp = 8 on the mesh of 10× 10 rectangular elements.

Table 16 tabulates from the cost functions the computing times for achieving different levels of accuracy. In addition,

we include in this table data from the cost functions of the NDG scheme on rectangles. The value inside a parenthesis

is a cost ratio of the scheme withp − 1 to the scheme withp for the same given level of error. It can be observed

that the high order schemes outperform the scheme withp = 1 in terms of cost to achieve a specific level of accuracy.

To achieve the same level of accuracy, the costs of the DG solution with p = 3 are almost two to three order of

magnitude lower than the linear DG solution. Data in this table also indicate that the NDG solution on rectangles has

higher performance (ranging approximately between 1.3 to 3 times) than the NDG solution on triangles. The gain

from employing rectangular elements is minor in comparisonto the gain from using the high order schemes. We note
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Figure 17: Nonlinear Stommel problem with linear bathymetry: log-log plots of errors att = 12 days in theL2-norm normalized by‖zb0‖2 versus
h−1

⋍
√

Nel. (a) Errors in the surface elevation. (b) Errors in thex-directed water discharge.

Table 16: Nonlinear Stommel problem with linear bed: computing time Tε
c required to achieve a specified level of error inHh of the nodal DG

solution on rectangles and on triangles. A numeric value in the parenthesis is the ratio betweenTε
c of a scheme withp− 1 and that ofp.

Scheme p
Computing timeTε

c ≡ Tc(ε)

ε = 1e-06 ε = 1e-07 ε = 5e-08 ε = 2.5e-09

NDG quad

1 2510.45 99096.31 299635.78 35763219.21

2 112.89(22.24) 1630.82(60.76) 3643.57(82.24) 117599.81(304.11)

3 50.40(2.24) 430.14(3.79) 820.21(4.44) 13348.67(8.81)

NDG Tri

1 7692.93 268412.10 781995.33 79490736.19

2 190.71(40.34) 2497.78(107.46) 5418.23(144.33) 153935.97(516.39)

3 77.64(2.46) 618.55(4.04) 1155.28(4.69) 17189.70(8.96)
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Figure 18: Nonlinear Stommel problem with linear bathymetry: wall clock time as a function ofh−1
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Figure 19: Nonlinear Stommel problem with linear bathymetry: error‖ζref − ζh‖2/‖zb‖2 as a function of the wall clock time.

that the characteristics of the DG solution in terms of convergence and cost per accuracy are similar to those observed

in the manufactured solution test case (Section 4.2) and theflat-bed Stommel test problem (Section 4.3.1).

5. Conclusions

In this work, we present a comprehensive performance assessment of LLF-flux nodal discontinuous Galerkin

(NDG) and polymorphic nodal discontinuous Galerkin (PNDG)solution of the time-dependent nonlinear SWE. The

integration in time is carried out using the RKF45 time integrator, which has a mechanism to adjust∆t to control

temporal errors. These methods are applied to a set of problems with sufficiently smooth solutions: a manufactured-

solution problem and the nonlinear Stommel problem with flat- and non-flat bathymetry.
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The numerical solutions show that all the schemes tested exhibit a convergence rate of order betweenO(hp) and

O(hp+1), typically close top + 1/2, for the water column height. The performance analyses clearly show that the

high-order schemes (p > 1) outperform the linear-element scheme in terms of cost peraccuracy performance. For a

specified level of error, the computational cost required decreases noticeably as the degreep of the DG polynomial

increases. In the test problems employed here, for a moderate specified level of error, the computational cost for the

schemes withp = 3 are typically about two to four orders of magnitude, in other words a hundred to ten thousand

times, lower than the scheme withp = 1. The benefit gained by employing a one-higher order interpolant however

diminishes as the interpolation orderp increases. We find that the use of cubic or bi-cubic interpolants (p = 3), is

particularly appealing due to dramatic improvement in costas compared to (bi-)linear interpolants and moderate gain

over (bi-)quadratic interpolants.

In addition, we examine whether element shapes other than triangles, in particular quadrilaterals, which reduce

the number of elements in the computational mesh would improve the efficiency of DG solutions. Here, we consider

a mesh setting in which computational meshes of various element shapes are derived from a given triangular mesh.

The numerical results provide evidence that there may be a benefit in using quadrilateral elements, especially, those

with nodal tensor-product bases. In the numerical experiments conducted, the NDG scheme on rectangles exhibits

higher (or at worst comparable to) cost-per-accuracy performance as compared to other schemes. We believe that

this promising performance stems primarily from two reasons. First, quadrilateral meshes contains fewer elements.

Second, the tensor-product elements improve/retain the accuracy level owing to the tensor-product basesspanning

additional cross polynomial terms for a given degreep. We note that the performance benefit of the tensor-product

schemes is however relatively minor in comparison to using high order elements.

A treatment of the bed term that leads to a well-balanced scheme has been also discussed. Such a treatment is

based on replacing the bathymetry with an interpolant of thesame degree with the DG interpolant and exact realization

of the DG weak formula at the still water state. The latter requirement renders the schemes, which uses the so-called

nodal integration approach in evaluating the integral terms, non well-balanced when the standard SWE form (2) is

considered. We find that when employing instead the equivalent, frequently-used form of SWE (50), the well-balanced

property can be achieved with less expensive realization technique, including the NDG scheme.

In this work, we use a manufactured-solution problem with a tide-like solution and wind-driven circulation prob-

lems. Numerical evidence shown here suggests that there is asignificant cost performance benefit achieved by using

the high-order DG method for these types of problems. A similar conclusion can be expected in general for smooth-

solution problems, since in these cases, high-order accuracy solutions can be expected when using the high-order

DG methods. We note that the cost performance benefit is also reported in high-order solutions to the Navier-Stokes

equations with smooth solutions [39]. Although a problem with a curvilinear domain is not examined here, it is noted

that, as demonstrated in our work [40], a proper treatment ofno-normal flow on solid curved walls is crucial for an

accurate DG solution to the SWE, including a linear-elementDG. Performance studies for problems that contain more

challenging features such as wetting/drying fronts, derivative discontinuities, and (inviscid) shocks are a subject of our

future studies. Without going into detail, we note that, with the features mentioned, high-order methods will not yield

high-order accuracy solutions in a global sense using fixed grid solutions. In areas away from these features where

the solution is smooth, good convergence can still be expected provided that mechanisms that are in place to handle

possible numerical artifacts that may be induced by these features preserve accuracy in the smooth-solution areas.
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Appendix A. Evaluation of the stiffness matrix

In this section, we describe an approach used in evaluating the stiffness matrices defined in section 3.1. Consider

the stiffness matrix associated with thex-directed flux,i.e.

Sx = (Sx,(i, j)), Sx,(i, j) =

∫

K

∂φi

∂x
φ jdx, i = 1, . . . ,Mp, j = 1, . . . ,Mp. (A.1)

To compute such a matrix, the partial derivative ofφi with respect tox is written in the nodal representation, more

precisely

∂φi

∂x
=

Mp∑

n=1

Dx,(n,i)φn(x)

where

Dx,(i, j) ≡
∂φ j

∂x

∣∣∣∣∣∣
xi

denotes an entry of the so-called derivative matrixDx. Substituting and manipulating yield the following result

Sx = DT
xM (A.2)

whereM is a mass matrix (with respect to the nodal basis functions) defined and evaluated as follows

M ≡
∫

K

φφTdx = J
∫

K

(V−1)T φ̃φ̃
T

V−1dξ = (V−1)TV−1 (A.3)

whereJ = (∆X)2 is the Jacobian of the geometric transformation (14). The remaining task for determining the stiffness

matrix is to find the derivative matrixDx. SinceVTφ = φ̃, it follows thatVT∂φ/∂x = ∂φ̃/∂x. The derivative matrix

can thus be determined from

DxV = Dx (A.4)

whereDx is a matrix with the entries

Dx,(i, j) ≡
∂φ̃ j

∂x

∣∣∣∣∣∣∣
xi

, i = 1, . . . ,Mp, j = 1, . . . ,Np

which can be computed easily in practice. It is noted that thestiffness matrix associated withy-directed flux,Sy =∫
K
∂φ/∂yφTdx, can be computed in an analogous way.

Appendix B. Remarks on code implementation details

The main computing cost in the simulations involves evaluating of the right-hand-side term of the system of

ODEs (33),i.e., M−1r (̃u, t), which is required by the time integration solver for a given solution vector̃u and timet.

Algorithm 1 depicts, in brief, an outline of the steps employed in the calculation of the right-hand-side vector. Here,

a one-dimensional array is used to store the global solution; the entries of the expansion coordinates belonging to the
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Algorithm 1 Right-hand-side (RHS) vectorM−1r (̃u, t) calculation.

Given a vector of expansion coordinatesũ = {(̃u1)T (̃u2)T . . . (̃uNe−1)T (̃uNe)T}T
⊲ Ne-the number of elements

for i = 1 to Ne do
⊲ contribution from volume integration

ri ← Si
x f i

x(̃u
i) + Si

y f i
y(̃u

i)

⊲ contribution from edge integration

for j = 1 to Ni
f do

⊲ Ni
f-the number of edge segments of the ith-element

⊲
⋃Ni

j

j=1(∂Ki) j = ∂Ki, (∂Ki) j- jth-edge segment

ri ← ri +
∫

(∂Ki ) j

φ̃
i
f̂ · nds

end for

ri ← (Mi)−1ri

end for

Return RHS vectorr = {(r1)T (r2)T . . . (rNe−1)T (rNe)T}T

same element are kept in consecutive order. The right-hand-side term associated with theith-element is determined

within the ith-iteration of a loop over the elements. It is obtained by combining the contribution from the volume

integrals and edge integrals of all edge segments. As a reminder, in Algorithm 1,Si
x (andSi

y) denotes a (pre-computed)

generalized stiffness matrix; the vectorsf i
x and f i

y denote, respectively, a vector of nodal coordinates ofx- andy-

directed flux (see section 3.1). An edge segment is a straightline and, for non-conforming elements, it is not the

entire edge of an element. For conforming edges and order, anapproach similar to that utilized in treating a volume

integral of the nonlinear flux term is adopted for the calculation of the edge integral,i.e., by writing the numerical flux

f̂ h · n as a linear combination of one-dimensional Lagrange basis functions of orderp, φ = {φm(ς(x)), ς ∈ [−1, 1], x ∈
(∂K) j}m=1,...,p, and determining the edge integral through

∫

(∂K) j

φ̃i f̂ h · nds≈
|(∂K) j |

2

p+1∑

m=1



1∫

−1

φ̃iφmdς

 ( f̂ h · n)(x(ςm)). (B.1)

whereς(x) is a linear coordinate transformation mappingx ∈ (∂K) j to ς ∈ [−1, 1] and{ςm} denotes the set of interpo-

lation nodes with the Gauss-Lobatto node distribution. Although all numerical results reported here are solved on the

conforming meshes and orders, we note that the computer program used in the numerical tests also accommodates

both non-conforming elements and non-conforming orders and supports dynamicallyh- and p-adaptive refinement.

For non-conforming edges and/or order, the edge integrals are obtained through the use of acertain Gauss-quadrature.

In both cases, the integral term on an edge segment is writtenas a multiplication of the matrix of dimensionMp × p̄

and the vector of dimension ¯p (note that ¯p denotes the number of points used in the integration andMp the number of

elemental basis functions). In the calculation of the flux and the numerical flux, the interpolated values of the solution,

when needed, are realized through the multiplication of theappropriate Vandermonde matrix and a vector of modal

expansion coordinates of the solution.

47



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The computer code employed in the numerical simulations is written in Fortran 77 and Fortran 90. It is compiled

using the IntelR© Fortran version 11.1 compiler with the optimization flag setto -03. Note that a significant portion

of computing time is spent on performing matrix-vector multiplications. We make extensive use of the Fortran Basic

Linear Algebra Subprogram (BLAS) level 2 [41]DGEMV() for matrix-vector multiplications. Such a subroutine

involvesO(M × N) operations whereM andN are the dimensions of the matrix considered. Numerical computations

are conducted on dual six-core 2.4 GHz AMD Opteron model 243164 bit 12 GB RAM nodes available at the Center

for Research Computing at the University of Notre Dame.

Appendix C. Implementation of no-normal flow boundary condition

To impose the no-normal flow condition (43), we use an approach similar to that traditionally employed in weakly

enforcing a so-called natural boundary condition in finite element methods. In this approach, the numerical flux on

the no-normal flow boundary is defined as

F̂ = F(qb) (C.1)

where the stateqb = (Hb, ubHb, vbHb)T is determined by setting

(ubHb).n = 0, (ubHb).τ = (uH)−.τ, Hb = H−. (C.2)

whereτ is the unit-tangential vector of the no-normal flow boundary. The minus superscript is used to indicate the

value of variables on the boundary when approaching from theinterior of the element. It can be easily verified that

this setting amounts to using the following numerical flux onthe no-normal flow boundary

F̂ · n = (
0, F bnx, F bny)

T , F b ≡ 1
2

g(H−)2 (C.3)

wherenx andny denote thex- andy-component of the unit normal vectorn, respectively. It can be seen that (C.3) has

a vanishing value of flux for the continuity equation, thus weakly enforcing (43). Note that this implementation does

not require a Riemann solver.
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1. We investigate the performance of high-order DG methods for the SWEs. 

2. We examine the performance of triangular, quadrilateral, and polygonal DG elements. 

3. We discuss aspects on obtaining a well-balanced property in high-order nodal DG. 

4. High-order schemes outperform linear-element schemes in the cost-per-accuracy basis. 

5. A computational benefit is observed in tensor-product quadrilateral elements. 




