Lecture No. 3
The difference formulas used to approximate the various derivatives in a p.d.e.
should all have equivalent order error.
Order of error:
ooy Lo
dx?

Richardson Interpolation (Extrapolation)

n
With FD’s, we find -d—n using an approximation.

dx r=x,

The exact value equals the approximate value plus a given order error:
Y, = yp+chP +dP T e v

where
y, = the exact solution
y,, = the approximate value corresponding to spacing A

¢,d,e = coefficients which depend on the derivative in the interval

Example Application of Richardson Interpolation
Let’s assume that the FD operator is of second order accuracy, p = 2

« Now compute two solutions with different node spacings &, and A,;
Ye = ¥p, t ch%
A
Ye = Y, ch%_/

- ¢ is approximately identical for both spacings.

- Note that the higher order error terms which we are not considering still exist.
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» Solve for c using first equation:

_ 1
c = h—%(yg—yhl)

» Now we have solved for the leading order error term for the given interval. By

substituting into the second equation:

Ye =

(- RIRD) (=R
« This y, is a better solution than y hy and y By Therefore, using two crude 4 val-

ues and using the same FD formula to obtain 2 estimates for the derivative, we

get a much improved value which would otherwise require a much smaller node

spacing than either £, or k,.

Unequal Spacing of Nodes

Spacing between points need not be constant.
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applying TS:
— (1) 2 g2 3 3
fror = Bt by fD 4 202 2 4 203, D 4

1 2 3
Fiy=fim f”+ Lyzp@ _ _h3f“

First Derivative Approximation (central) Using Unequal Nodal Spacing

Consider:
1 1 2
firt ~Fimr = b of D +hED + 3 G - BOFD + L, 41 s
=
3

FO Jiv1—Ti-1 (h h)f(?') 1 (B, +1D) 3,

ET By th) 27 6(h,+1+h)l
_ |

;D = %’31;1%,;_1 +E (Ah)

Note that the leading truncation term is E (Ah) .

Therefore the error order has increased. The error increases with larger variation
in node spacing.

Ifh ;= h;, the error reduces to that of the 2nd order central difference for-

mula.

The order of the polynomial for which the expression is exact has also de-
creased (to linear from quadratic for constant spacing).

Variable spacing can be very useful to control the level of accuracy of the solu-
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tion since the truncation error terms equal the product of an E (Ah) or E (K"
term and a spatial derivative of the solution. Thus when the solution varies rap-
idly in space, the nodal spacing can be reduced in order to control the magnitude

of the various truncation terms and thus the overall accuracy of the solution.

2nd Derivative Approximation (central) with Variable Nodal Spacing
h1+1
Add f +1 and —— h f;

Ry hiyq hiv1h 7 1)
fient lhl_fz I=fi[1+ ‘h }“"["Hl“iﬁf—‘}ﬂ(

i i

1 i1 2142) 1 by 3 (3)
Q[hwl'*' Ihl_ hi}fi I h:+1 lh: h;

=
;+1 l+1
—5—f; - 2
£ _ [ Jf hy -1 l(hz-i-l hi 4 1h7) #®
l 1 I
5 (h fe1t k) ";z(hi+1+hi+1hi)
"
h.
+1 +1
1+1 ( l )ﬁ+”ﬁgfﬁ—l '1 3
f(z) 1 - -3 (hi+1_hi)fi( )
§(h;+1+hz+1h)

« Therefore the error has again increased to order E (Ah) while with constant

spacing it was E (h%).



GRID CONVERGENCE STUDIES FOR HURRICANE STORM SURGE
COMPUTATIONS

* Objectives

Establish grid resolution requirements and the associated discretization error levels for

computations with a range of storm parameters and shoreline geometries.

Develop graded grids which provide a consistent level of normalized extreme error

throughout the hurricane.

Examine basic convergence behavior and study Richardson based error estimators

- Rectangular domain with shelf, slope and deep ocean bathymetries

- Forcing Function

Wind and pressure forcing from a synthetic hurricane as computed by the HURWIN

model (Cardone, 1992) using a shore perpendicuolar track.

Error Analysis for Hurricane Storm Surge Computations

Time history of extreme over- and under-prediction errors.
Apply Roache’s {1994) Grid Convergence Index {GCI) to establish error bands

GCP’s are based on Richardson extrapolation and computed using the difference between

two discrete solutions at different spatial and/or temporal resolutions,

Comparing a coarse and a fine grid solution, the GCI’s equal:

- .
{GCI)Coarse = F ’_IEI. and (GCI)Fine = Fy IE'
rf -1 rt—1

where

£ gfcﬂﬂrsﬂ_fﬁne

r = refinement factor

I

p = order of the method

Iy = safety factor



Formal Convergence Rate

- Determined by the leading order space and time truncation error terms

Actual Asymptotic Convergence Rate

- Interaction between the leading order and higher order truncation terms when response

gradients increase with grid refinement

Observed Convergence Rate
- Often differs from Formal and Actual Asymptotic convergence rates due tn:

+ Computer roundolf

= “Refatively” conrse discretization leading to higher order truncation ierms competing

with the leading order truncation {erm
* Space - time truncation error inferaction
» Parameter resolution effects
* Frequency distribution of the response
* Appearance of artificial flow features due to the discretizaiion algorithm

* Boundary condition implementation, placement or specification



* Convergence Study of Uniform Grids for an Idealized Rectangular Domain

- Grids
Grid Structure Grid Size (km) | Nodes
G50 uniform 50 3111
G25 uniform 25 12221
Gl12.5 uniform 12.5 48441
- Computed GCI's
Grid GCI Error Bstimate
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Richardson Based Error Estimates for Grid G50

RICHARDSON BASED ERROCR ESTIMATE

RICHARDSON BASED ERRCR ESTIMATE
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Richardson Based Error Estimates for Grid G25 Using Grid G12.5 - GCIC:?E-EGH.S
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» Convergence Study of a Graded Grid for an Idealized Rectangular Domain

Grids
Grid Structure Grid Size (km) | Nodes
VG02 graded 12.5—50 4014
CvVaGo2 graded 6.25—25 15647
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Results

Seolutions converge monotonically with increasing grid refinement.

Actual convergence rate dees not match formal rate, necessitating the use of a safety fac-

tor in error estimation,

The Richardson based GCI is a very useful tool for previding reasonable estimates for

discretization errors.

Extensive studies varying domains, boundaries and storms have shown that grid resolu-
tion is the dominant factor in controlling normalized extreme error levels (normalized

with peak surge).

While the storm is in deep water, under-resolution of the grid leads to dominant under-

prediction of the inverted barometer due to aliasing of the pressure forcing function.

While the storm is on the continental shelf, under-resolution of the grid leads to a domi-

nant over-prediction of the peak surge.



