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Perspective: A Method for
Uniform Reporting of Grid
Refinement Studies

This paper proposes the use of a Grid Convergence Index (GCI) for the uniform
reporting of zrid refinement studies in Computational Fluid Dynamics. The method
provides an objective asymptrotic approach ro quantification of uncertainty of grid
convergence. The basic idea is to approximately reiare the resulls from any grid
refinement test 10 the expected results from a grid doubling using a second-order
method. The GCI is based upon a grid refinement error estimator derived from the
theory of generalized Richardson Extrapolation. It is recommended for use whether
or not Richardson Extrapolation is actually used to improve the accuracy, and in
some cases even if the conditions for the theory do not strictly hold. A different
form of the GCI applies to reporting coarse grid solutions when the GCI is evaluated
from a “nearby’’ problem. The simple formulas may be applied a posteriori by
editors and reviewers, even If authors are reluctant to do so.

Introduction

“If vou want a new idea, read an old book.” (Anon.)

The Computational Fluid Dynamics community is currently
in the midst of a “‘reform movement’’ in regard to quantifi-
cation of uncertainty (e.g., Mehta, 1991; Celik et al., 1993).
Progressive journals are now explicit in their requirement for
grid convergence studies or other uncertainty estimation (e.g.,
Roache et al., 1986; Freitas, 1993; AIAA, 1994). However,
there is no uniformity in the performance of these studies, nor
even more basically in the reporting of the results.

This paper proposes the use of a Grid Convergence Index
(GCI) for the uniform reporting of grid refinement studies in
Computational Fluid Dynamics and related disciplines. There
are other possible techniques for the quantification of nu-
merical uncertainty, but systematic grid refinement studies are
the most common, most straightforward and arguably the most
reliable. The motivation for the proposed uniform Grid Con-
vergence Index is the inconsistent and confusing reporting of
grid refinement studies in the engineering and scientific liter-
ature. The following hypothetical examples will suffice.

One paper states that the grid density was increased by 50
percent, resulting in a difference in some solution norm of 4
percent (of the fine grid solution) using a first-order accurate
method. In another paper, grid density was doubled, resulting
in a difference of 6 percent, using a second-order method.
Which fine grid solution is more reliable?, i.e., better con-
verged? More important, can the reader have any reasonable
expectation that these numbers represent a ‘‘percent accuracy
error band”’, i.e., that the fine-grid calculations are probably
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accurate to within 4 or 6 percent of the true solution of the
continuum equations?

Note that we are concerned herein with verification of a
particular calculation, i.e., estimating the grid convergence
accuracy of a particular discretized solution. We assume that
the code itself has already been verified for the same class of
problems (so that coding errors are not an issue and, if done
properly, the order of accuracy has been verified; e.g., see
Steinberg and Roache, 1985; Blottner, 1990). Nor are we con-
cerned with code validation, e.g., that a turbulence model is
adequate. See Blottner (1990) for discussion of validation, or
“solving right governing equations’’ versus verification, or
“solving governing equations right.”” (In the present author’s
opinion, a code and a particular calculation can be verified,
and not with excessive difficulty. However, a code cannot be
validated in any general sense, i.e., by comparison with ex-
perimental values. Rather, only a particular- calculation or
narrow range of calculations can be validated.) Also, it is
always worth noting that this paper and similar grid refinement
studies address only ‘“‘ordered”’ discretization errors, which by
definition vanish as grid spacing 4 — 0. Specifically, the errors
introduced by the use of far-field compurational boundaries
must be assessed separately (e.g., see Roache, 1972). Further,
I consider herein only a posteriori error estimation, being of
the opinion that useful a priori estimation is not possible for
fluids engineering problems.

Richardson Extrapolation

Richardson Extrapolation, aiso known as “*ji* extrapola-
tion”’ and ‘‘the deferred approach to the limit’’ and *‘‘iterared
extrapolation,’” was first used by Richardson in 1910, and later
embellished in 1927. The discrete solutions f are assumed to
have a series representation,.in the grid spacing 4, of
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f=flexact] + gk +g2,’12+g3h3+. ) D

The functions g;, gs, etc. are defined in the continuum and do
not depend on any discretization. For infinitely differentiable
solutions, they are related to all orders to the solution deriv-
atives' through the elementary Taylor series expansions, but
this is not a necessary assumption for Richardson Extrapo-
lation, nor is the infinite series indicated in Eq. (1). It is only
necessary that Eq. (1) be a valid definition for the order of
the discretization. Thus, the extrapolation may be valid for
finite element solutions, etc. - .

For a second-order method, g, = 0. Then the idea is to
combine two separate discrete solutions f; and f2, on two dif-
ferent grids with (uniform) discrete spacings of A, (fine grid)
and A, (coarse grid), so as to eliminate the leading order error
terms in the assumed error expansion, i.e. to solve for g; at
the grid points in Eq. (1), substitute this into Eq. (1) and obtain
a more accurate estimate of f[exact]. The result is the original
statement (Richardson, 1927) for A” extrapolation.

Flexact]=(F3f; — i f2)/ (B3 — hi) + H.O.T. )

where H.O.T. are higher-order terms. Using the grid refine-
ment ratio r = ha/hy, this can be conveniently expressed in
terms of a correction to the fine grid solution f;, dropping
H.O.T.

flexactl=fi+ Gi=f)/ (=1 . @)

The most common use of this method is with a grid doubling,
or halving. (These are identical. Both use two grids, one twice
as fine as the other;i.e., we have a coarse grid and a fine grid.
Whether we ‘‘doubled” or “halved’’ just depends on which
calculation came first!) With 7 = 2, Eq. (3) becomes

Sflexact] =4/3f, — 1/3f. C))

It is often stated that Eq. (&) is fourth-order accurate if f}
and f; are second-order accurate. Actually, as known by Rich-
ardson, this is true only if odd powers are absent in the ex-
pansion (1), which he achieved by assuming the exclusive use
of second-order centered differences. If uncentered differences
are used, e.g., upstream weighting of advection terms, even if
these are second-order accurate (3-point upstream), the 4~ ex-
trapolation is third-order accurate, not fourth. As a practical
limitation, even extrapolations based on centered differences
do not display the anticipated fourth-order accuracy until the
cell Reynolds number Rc is reduced; for the 1-D advection-
diffusion equation with Dirichlet boundary conditions, Rc <
3 is required (Roache and Knupp, 1993).

Although Richardson Extrapolation is most commonly ap-
plied to grid doubling, and is often stated to be only applicable

to integer grid refinement (e.g., Conte and DeBoor, 1965) this -

is not required. In order to use Eq. (3) it is necessary to have
values of f; and f; at the same points, which would seem to
require commonality of the discrete solutions, and therefore
integer grid refinement ratios r (grid doubling, tripling, etc.).

However, even in his 1910 paper, Richardson looked forward -

to defining a continuum f; by higher-order interpolation, and
in the 1927 paper had a specific approach worked out. Ferziger
(1993) alludes to this approach with less detail but more gen-
erality. Similarly, Richardson Extrapolation is commonly ap-
plied only to obtaining a higher-order estimate on the coarse
grid with A, = 2h,, but Roache and Knupp (1993) show how
to obtain fourth-order accuracy on all fine-grid points by sim-
ple second-order interpolation, not of the solution values f3,
but of the extrapolated correction from Eq. (4),i.e., by second-
order interpolation of 1/3 (f; — f2)- Theuse of simple second-
ordér interpolation avoids complexities with nonuniform grids
and near-boundary points. )

Richardson (1910, 1927) also considered sixth-order extrap-
. olation (using 3 grid solutions to eliminate g»and g4), para_bohc
and elliptic equations, staggered grids (then called “‘inter-
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gen_etrating lattices”’), rapid oscillations and the 2k wayelength
hml_t, a priori error estimates, singularities, integral equations,
‘'statistical problems, Fourier coefficients, and other noncal-
culus problems. For example, Richardson (1927) showed the
power of the method in an elegant example of extrapolating -
two very crude approximations to a circle, namely an inscribed
square and an inscribed hexagon, to get an estimate of = with .
three-figure accuracy. :

The usual assumptions of smoothness apply, as well as the
assumption (often verified) that the local error order is indic-

. ative of the global error order. The extrapolation must be used

with considerable caution, since it involves the additional as-
sumption of monotone truncation error convergence in the
mesh spacing 4. This assumption may not be valid for coarse
grids.. Also, the extrapolation magnifies machine round-off
errors and incomplete iteration errors (Roache, 1972). In spite
of these caveats, the method is extremely convenient to use
compared to forming and solving direct fourth-order discre-
tizations, which involve more complicated stencils, wider band-
width matrices, special considerations for near-boundary points
and non-Dirichlet boundary conditions, additional stability
analyses, etc., especially in nonorthogonal coordinates which
generate cross-derivative terms and generally complicated
equations. Such an application was given by the present author
in Roache (1982).

The method is in fact oblivious to the equations being dis-
cretized and to the dimensionality of.the problem, and can
easily be applied as a postprocessor (Roache, 1982) to solutions

.on two grids with no reference to the codes, algorithms or

governing equations which produced the solutions, as long as
the original solutions are indeed second-order accurate.! The
difference between the second-order solution and the extrap-
olated fourth-order solution is itself a useful diagnostic tool,
obviously being an error estimator (although it does ot pro-
vide a true bound on the error except possibly for certain trivial
problems). It was used very carefully, with an experimental
determination rather than an assumption of the /ocal order of
convergence, by de Vahl Davis (1983) in his classic benchmark
study of a model free convection problem. See Nguyen and
Maclaine-Cross (1988) for-application to heat exchanger pres-
sure drop coefficients. Zingg (1993) applied the Richardson
error estimator to airfoil lift and drag calculations in body-
fitted grids. (Zingg’s work demonstrates the necessity of grid
convergence testing even when experimental data are available.
In 4 of 7 cases, experimental agreement was better with coarse
grid calculations than with fine. Also, his data indicate that
Richardson Extrapolation can be applied to the estimation of
far-field boundary errors, with the error being first order in
the inverse of distance to the boundary.) Blottner (1990) has
used the same procedure to estimate effects of artificial dis-
sipation terms in hypersonic flow calculations. -

An important aspect of Richardson Extrapolation is that it
applies not only to point-by-point solution values, but also to
solution functionals, e.g., lift coefficient C; for an aerody-
namics problem or integrated discharge for a groundwater flow
problem, provided that consistent or higher-order methods are
used in the evaluations (e.g., second or higher-order quadra-
tures for lift) as well as the basic assumption that the “‘order”
of the method applies globally as well as locally. If Richardson
Extrapolation is applied to produce (say) fourth-order accurate
grid values, one could in principle calculate a fourth-order
accurate functional like C;, from the grid values, but it would
require careful implementation of fourth-order accurate quad-
ratures. It is much simpler to apply the extrapolation directly
to the C.’s obtained in each grid, requiring only second-order

'] use the common- but somewhat abusive terminology of “scmnd-o'rdc.;r ac-.
curate solution’” to mean a solution obtained by a verified second-order accurate
method applied in the asymptotic range of grid spacing. ’
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quadratures. Indeed, this is a major attraction of Richardson

Extrapolation compared to using fourth-order accurate stencils

solved either directly or by deferred corrections. (Note, how-
ever, that the two approaches yield different answers, although
both are fourth-order accurate if done properly.)
- A very significant yet overlooked disadvantage of Richard-
son Extrapolation is that the extrapolated solution generally
is not ‘““conservative’’ in the sense of maintaining conservation
properties (e.g., Roache, 1972). This could well dictate that
Richardson Extrapolation not be used. For example, if it were
used on the ground-water flow simulations for the Waste Iso-
lation Pilot Plant (WIPP PA Dept., 1992), it would be ‘‘more
* accurate’ in some norm, but would introduce additional non-
conservative (i.e., lack of conservation property) source terms
into the radionuclide transport equation. It is also noteworthy
that Richardson (1927) pointed out that the accuracy of the
extrapolation does not apply to arbitrarily high derivatives of
the solution. The extrapolation can introduce noise to the
solution which, although low level, may decrease the accuracy
of the solution higher derivatives. :
Thus, it is not advocated here that Richardson Extrapolation
necessarily be used to improve the reported solution, since that
decision involves these considerations and possibly others.
What is advocated is that, regardless of whether Richardson
Extrapolation is used to improve the solution, the proposed
Grid Convergence Index (defined herein and based on the
generalized theory of Richardson Extrapolation) be used to
uniformly report grid convergence tests.

A Generalization of Richardson Extrapolation

-Without assuming the absence of odd powers in the expan-
sion of Eq. (1), we can generalize Richardson Extrapolation
to pth order methods and r-value of grid ratio, again elimi-
nating the leading term in the error expansion, as follows.

flexact] =f + (fi =)/ (= D). )

If the next term in the series is zero, e.g., if centered dif’ ferences
were used, then the extrapolation is (p + 2) order accurate.
But generally, and notably if upstream-weighted methods for
advection have been used, the extrapolation is (p + 1) order
accurate.

It may easily be verified that Eq. (5) is valid for multi-
dimensions in any coordinates, including space and time, pro-
vided that the same grid refinement ratio r is applied, and the
order p is uniform, in all space and time directions.

In Eq. (5), the correction to the fine grid solution f; is
obviously an error estimator of the fine grid solution. Ex-
pressing this as an Estimated fractional error E, for the fine
grid solution f;, we have

E\[fine grid] =e/(r*— 1) ©)
e=(fr—Sf1)/fi- : )]

Defining the Actual fractional error 4, of the fine-grid so-
lution as usual,

A= (fi — flexact])/flexact] 8)
and using Eqgs. (5)-(8) and the binomial expansion gives
Ay =E +0(a", E}) ©

where / = 1 generally or / = 2 if centered differences have
been used. Thus, E; is an ordered error estimator, i.e., an
ordered approximation to the actual fractional error of the
fine grid solution. E; is a good approximation when the so-
lution is of reasonable accuracy, i.e., when E; << .

This is generally not true of ¢ in Eq. (7), whichis the quantity
commonly reported in grid refinement studies. That s, € is not
“always an error estimator since it does not take into account
rorp.Forr < 2and p = 1, ¢ alone is optimistic, under-

estimating the grid convergence error compared to E, (by a
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factor of 2 for r = 1.5). Forr = 2'and p = 2, e alone is
conservative, over-estimating the grid convergence error com-
pared to E) (by a factor of 3). Note that e can be made (almost)
arbitrarily small, just by choosing r = 1. (The only qualifi-
cation is that ris limited by the integer character of the number
of grid points, so the smallest r = N/(N — 1) where Nis the
number of grid points in each direction of the fine grid.) This

-is analogous to the situation wherein an arbitrarily small tol-

erance on iterative convergence can always be met by using an
arbitrarily small relaxation factor, belying the adequacy of such .
an iterative convergence criterion (Roache, 1972; Ferziger,
1993). )

E, may of course be expressed as a percent, and like any
relative error indicator it will become meaningless when f, or
flexact] is zero or small relative to (2 — f), in which case
the denominator of Eq. (7) should be replaced with some
suitable normalizing value for the problem at hand, as would
the usual definition of actual relative error 4, in Eq. (8).

As described earlier, one may choose to not use Richardson
Extrapolation for good reasons, e.g., due to concern over the
actual order of the method, or accumulation of round-off
error, or incomplete iterative convergence error, or uncertainty
that the asymptotic range has been reached, or lack of the
conservation property in the extrapolated results, etc. But
whether or not one chooses to use or report the results of the
extrapolation, one can still use the theoretical basis to con-
sistently report the results of the grid refinement study.

Grid Convergence Index for the Fine Grid Solution

Although the error estimator £, of Eq. (6) is based on a
rational and consistent theory, it is certainly not a dound on
the error. (Nor is a reliable and practically tight bound on
solution error for nonlinear problems likely to be forthcoming,
in the author’s opinion.) What is generally sought in engi-
neering calculations is not a true *‘error bound’’ but just an
“error band,”’ i.e., a tolerance on the accuracy of the solution
which may in fact be exceeded, but in which the reader/user
can have some practical level of confidence. The error esti-
mator £ itself does not provide a very good confidence in-
terval. (One might expect that it is equally probable that E,
be optimistic as conservative, i.e., it is just as likely that the
actual error A, be greater than E; as less than E;. This would
correspond roughly to a 50 percent confidence band.) A well-
founded probability statement on the error estimate, such as
a statistician would prefer (e.g., a two-sigma limit) is not likely
forthcoming for practical CFD problems. However, based on
cumnulative experience in the CFD community, at least a mar-
ginal confidence level exists for the e of Eq. (7) obtained using
a grid doubling and a verified second-order accuracy code.

That is, for a grid doubling with a second-order methad,
and some indication that the calculations are within the asymp-
totic range of convergence, most CFD practitioners would
accept the e of Eq. (7) as a reasonable error band, in the flavor
of a statistician’s 2-o range or an experimentalist’s 20:1 odds
(Kline and McClinstock, 1953). An € of (say) 6 percent would *
be taken to indicate (not absolutely, but with reasonable con-
fidence) that the fine grid solution was within 6 percent of the
asymptotic answer. This confidence is well justified by the
theory of Richardson Extrapolation, which shows, from Egs.
(6) and (7) with r = 2 and p = 2, that the error estimate E|
is only 1/3 of this error band, or 2 percent.

The idea behind the proposed Grid Convergence Index is to
approximately relate the e of Eq. (7) obtained by whatever grid
refinement study is performed (whatever p and r) to the ¢ that
would be expected from a grid refinement study of the same
problem with the same fine grid using p = 2and r = 2, L.e,,
a grid doubling with a second-order method. The relation is
based on equality of the error estimates. Given an ¢ from an.
actual grid convergence test, the GClI is derived by calculating
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the error estimate E; from Egs. (6) and (7), then calculating
an equivalent ¢ that would produce approximately the same
E,withp = 2andr = 2. The absolute value of that equivalent
¢ is the proposed Grid Convergence Index for the fine grid
solution, which is conveniently expressed as

(10

) GCl{fine grid}=3lel /(" ~ 1)
where ¢ is-defined in Eq. (D).~
We note immediately that for a grid doubling (r = 2) with
a second-order method (p = 2), we obtain GCI = lel, as

intended. ;

The purpose of the proposed GCl is not to preclude more
convincing grid convergence tests (such as using Richardson
Extrapolation over several grid refinements, e.g., Shirazi and
Truman, 1989; Blottner, 1990). The modest purpose herein is
just to get minimal two-calculation grid refinément exercises
onto a uniform reporting basis. -

The GCI, like the theory.of Richardson Extrapolation on
which it is based, is equally applicable not only to grid values,
but also to solution functionals (e.g., Cr) and to plotted curves,
wherein ¢ may be read visually or calculated from interpolated
tabular values. Thus it may be used to produce plots of the
estimated error band about a fine grid solution by post-proc-
essing the results of any two grid solutions. Nonphysical os-
cillations in the solutions (*‘wiggles’’, e.g., see Roache, 1972)
are of course a cue that the solutions are not in the asymptotic
range, Richardson Extrapolation is not accurate, E, of Eq. (6)
is not a valid error estimator, and confidence in the GCI as
an error band is rot justifiable.

~ Applying Eq. (10) to the hypothetical cases in the second
- paragraph of the introduction, we see that a 4 percent differ-
ence from a grid refined by 50 percent using a first-order
method gives a fine-grid GCI = 24 percent, whereas a 6 percent
difference from a doubled grid using a second-order method
gives a fine-grid GCI = 6 percent. Even though the first paper’s
reported raw deviation e from coarse to fine grid calculations
might appear at first glance to be better than that reported in

the second paper (4 percent compared to 6 percent), it isin

fact not nearly as well converged (24 percent compared to 6
percent), as indicated by the proposed Grid Convergence In-
dex. ' ’

For a less hypothetical example, consider the grid conver-
gence results reported by the present author (Roache, 1982)
for benchmark calculations of weakly separated flows obtain-
ing using Richardson Extrapolation applied with grid doubling.
The reported quantification of convergence was the maximum
fractional deviation e, between the fine-grid second-order and
the extrapolated fourth-order solution f; from Eq. (4),

es= (fi—fa)/fs
The values reported were &4 = 0.17 percent for wall vorticity
and 0.13 percent for a velocity profile at a longitudinal station

traversing the separation bubble. This e, is easily related to the
¢ of Eq. (7); combining Egs. (4), (7), and (11) shows

e=3—3/(1 +e5)=3es+0(eD).
GCl[fine grid] =%,

(1n

(12a)
(12b)

The reported grid convergence criteria (Roache, 1982) of 0.17
percent for wall vorticity and 0.13 percent for velocity would
now be replaced by the much more conservative GCI[fine grid]
= 1.53 and 1.17 percent. :

In such cases wherein Richardson Extrapolation is actually
used to produce a higher order accurate solution, rather than
just to estimate the error of the fine grid solution, the GCI of
Eq. (10) (or (12b)) appears to be unfairly c_:ons__ervative. The
solution used is the (say) fourth-order accurate solution, but
the reported GCI would be the same even if only the second-
order accurate fin€ grid solution were used.. That is, E,-and
GCI are respectively the error estimator and Grid Convergence
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Index for the fine grid second-order solution, not for the fourth-
order solution. Although we expect the extrapolated solution
to be more accurate than the fine grid solution, we would need
additional information (a solution on a third grid) to estimate

-the error of the extrapolated solution-itself. Such a third grid

solution could be used in principle (possibly not in practice,
for nonlinear fluids engineering problems) to extrapolate a
sixth order accurate solution. That is, the error estimate (and
therefore the GCI) will always lag the best solution estimate.
This is quite conservative when the conditions for validity of
Richardson Extrapolation have been convincingly demon-
strated by numerical experiments (e.g., Roache, 1982;-Shirazi
and Truman, 1989; Blottner, 1990; Roache and Knupp, 1993).
A heuristic extension for such situations is to report the GCI
for the extrapolated solution based on Eq. (10) with ¢ replaced
by e from Eq. (11), giving GCl[ext. sol.] = | E, [fine grid]|
= lel/(? = 1).

On the other extreme, it is recognized that ostensibly second-
order algorithms may fail to attain second-order performance
in a particular calculation, due to coding quirks or" €rrors,
subtleties in nonlinear problems, overly strong grid stretching,
failure to attain the asymptotic range, etc. (see, e.g., de Vahl
Davis, 1983; Steinberg and Roache, 1985; Shirazi and Truman,
1989; Roache et al., 1990.) Unless the author has convincingly
verified that the code actually attains the theoretical order, at
least on a ‘“‘nearby’’ problem, the more conservative value of
p = 1 should be used in reporting the GCI in Eq. (10).

Two calculations of the same problem with the same value
of GCI, say a first-order calculation on a finer grid and a

_second-order calculation on a coarser grid, are not quite in-

different as to the uncertainty of the calculations. The GClI of
the first-order calculations is based on an only second-order
accurate error estimator, whereas the GCI of the second-order
calculations is based on a third or fourth-order accurate error
estimator. Thus, even with the same GCI, the second-order

" calculations have less uncertainty (in their uncertainty esti-

mates) than the first-order calculations.

Grid Convergence Index for the Coarse Grid Solution

Ostensibly, if we have a fine grid and a coarse grid solution,
we would be expected to use the fine grid solution, so reporting
of the above fine-grid GCI of Eq. (10) would apply. However,
a practical scenario occurs for which the contrary situation
applies, i.e., we use the coarse grid solution.

Consider a parametric study in which hundreds of variations
are to be run. (For example, consider a 3-D time-dependent
study of dynamic stall, with perhaps 3 Mach numbers, 6 Reyn-
olds numbers, 6 airfoil thickness ratios, 3 rotor tip designs,
and 2 turbulence models: a total of 648 combinations.) A
scrupulous approach would require a grid refinement study
for each case, but most engineers would be satisfied with one
or a few good grid refinement tests, expecting, e.g., that a grid
adequate for 2 NACA 0012 airfoil could be assumed to be
adequate for a NACA 0015 airfoil. (In fact, this is often not
justified by -experience, €.g., stall characteristics can be quite
sensitive to thickness ratio.) So for the bulk of the stack of
calculations, we would be using the coarse grid solution, and
we want a Grid Convergence Index for it. That is, we derive
a Grid Convergence Index from Eq. (5), not as the correction
to the fine grid solution £, but as the correction to the coarse
grid solution f;. In this case, the error estimate changes and
must be less optimistic.

flexact] =f+ (i —f)rP/r" = ). 13)
The coarse-grid GCI is then ' ’
. GClcoarse grid]=31el/ ("= 1). (14)
" GCl[coarse grid]-=r?+GCl[fine grid]. (15a)
: (15b)

_ GClfcoarse grid] = GCI[fine grid] +3lel.
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Table 1 Grid convergence index (GCI) calculated from Egs.
(10) and (14) for common values of grid ratios (z) and orders
of the basic numerical method (p), for both coarse grid so-

lutions and fine grid solutions, normalized to ¢ = 1 percent
Fine grid GCI Coarse grid GCI

- ur=RL RS 1l Tr=2 1.5 1.1
D D

1 3.00% 6.00% 30.00% 1 6.00% 9.00% 33.00%
2 1.00% 2.40% 14.29% 2 4.00% 5.40% 17.29%
3 0.43% 1.26% 9.06% 3 3.43% -4.26% .12.06%
4 0.74% 6.46% 4 3.20% 3.74% 9.46%

0.20%

Applying this equation to the hypothetical cases in the second
paragraph, we see that a 4 percent difference from a grid
refined by 50 percent using a first-order method gives a coarse-
grid GCI = 36 percent, whereas a 6 percent difference from
a doubled grid using a second-order method gives a coarse-
grid GCI = 24 percent. Note that the higher-order method
appears to be working against us here, because we are coar-
sening, rather than refining, the grid. In actuality, the ¢ for
the higher order method will be smaller for the same grid
refinement close to convergence.

GCI values for some common combinations of r and p,
normalized to e = 1 percent, are given in Table 1.

Should the Coefficient be 1’ or ““3”°?

The functional form of-the definition of the GCI (Egs. (10),
(14), (15)) is rational and objective, but the coefficient ‘3" is
a judgment call. It could arguably be ““1’’, or conceivably
“41.5” or ‘2" or something else between 'l and 3.

The value 3"’ is.passibly too conservative. As the quality
and rigor of the grid convergence study increases, so does the
conservatism of using the coefficient ““3” in the definition of
the GCI. However, consider practical complications such as
rapidly varying coefficients from turbulent eddy viscosities or
strong grid stretching, nonlinear systems, nonuniform behav-
ior of various error norms, experimental determination of spa-
tially varying p (e.g., see de Vahl Davis, 1983), nonmonotonic
convergence (e.g., see Celik and Zhang, 1993). Such compli-
cations, while not contradicting the ultimate applicability of
Richardson Extrapolation (i.e., in the asymptotic range) do
increase the uncertainty associated with the error estimate f8r
practical engineering fluid dynamics calculations. Likewise, if
the grid convergence exercise is only performed for a repre-
sentative “‘nearby’ problem, uncertainty is increased. These
considerations provide additional rationale for retaining ‘3"’
as the coefficient, in the sense of a ‘“factor of safety’’.

As noted above, using the value ““3”’ makes grid doubling
with second-order methods into the standard of comparison.
This is not intended to make second-order methods the goal,
only the standard. (Like an IQ of 100, it is not meant to
discourage genius.) It just means that for p = 2 and r = 2,
we obtain GCI [fine grid] = e. That is, it does not change
what authors who use grid doubling with a second-order method
already have been reporting, namely e.

Using the value ““1’* would make the GCI equal the error
estimator obtained from Richardson Extrapolation. As noted
earlier, since this is the best estimate we can make given only
the information from calculations on two grids, we can only
expect equal probability that the true answer is inside or outside
of this band. Also, simple tests on the steady-state Burgers
equation will quickly demonstrate that ‘17 is not usually con-
servative. Is <350 percent probability acceptable for an error
band? I think not. Perhaps most damning, the use of “‘1”

makes grid doubling with first order methods into the standard

of comparison, i.e., forp = land r = 2, the -GCI [fine grid]
calculated using *“1’’ would = ¢. Clearly, we do not want first
order methods to be the standard of comparison! (See, e.g.,
Freitas, 1994.)
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A 50 percent ‘‘factor of safety’” over the Richardson error
estimator would be achieved with the value *“1.5”", or the naieve
value of ““2’’ might prove to be a neat and reasonable com-
promise. But much experimentation would be required over
an ensemble of problems to determine a near-optimum value
and to establish the correspondence with statistical measures
such as the 2-¢ band. Note that a true optimum would likely
depend upon the family of numerical methods (e.g., medium-
order FVM, high-order FDM or FEM, etc.) and upon the
family of problems (e.g., turbulence, transonic, free surface,
etc.) ) : ; p

All things-considered, and after discussions solicited from
many (on the order of 200) CFD practitioners, I recommend
use of the value “3°” in the definition of the GCI, even though
it will be too conservative for high quality grid convergence
studies. Of course, there is nothing to preclude an author from
reporting both the GCI and the Richardson Error estimator
E}s g

Noninteger Grid Refinement

Although it is generally assumed that grid doubling is pref-
erable, it is argued here that, especially for the computer lim-
itations frequently encountered in practice for multidimensional
problems, it may be better to use a smaller change in grid
resolution, say 10 percent. Consider a base grid, and refine or
coarsen. If engineering intuition or studies on related
(‘“‘nearby’’) problems have led to a good (econoimical, yet ad-
equately accurate) grid selection for the base grid, then we are
likely in the asymptotic range, but perhaps just barely. If we
can afford to double the grid, we will certainly get more ac-
curate answers, but the cost can be large. With an optimal
numerical solution method, e.g., a good multigrid method, in
which the computing cost is merely proportional to the number
of unknowns, doubling a grid in three space dimensions and
time will increase the cost over the base grid calculation by a
factor of 16; if suboptimal methods are used, the penalty is
worse. If we coarsen the grid instead, the economics work for
us, i.e., the coarse grid solution is only 1/16 as expensive as
the base grid; however, the coarse grid solution may be out

“of the asymptotic range. This situation is especially evident in-

turbulent boundary layer calculations, wherein we need y* <
1 for the first grid point off the wall. See, e.g., Shirazi and
Truman (1989) or Wilcox (1993). This applies only when the
turbulence equations are integrated to the wall. Different re-
quirements apply if wall functions are used; e.g., see Celik and
Zhang (1993) or Wilcox (1993). :

Since the theory of generalized Richardson Extrapolation is
valid for noninteger-r, it is easier to use a small value (unless
the computor is confident that the coarse grid with r = 2 will
still be in the asymptotic range). However, there are practical
limits to small 7. For example, increasing the number of grid
points by one in a base grid calculation of a 100 x 100 grid
gives r = 1.01, and the theory is still valid. (Indeed, it would
still be better than no grid refinement study at all.) But the
results will now be obscured by other error sources, €.g., the
“noise” of incomplete iterative convergence and machine
round-off error. That is, as we reduce the change in the dis-
cretization error by using r — 1, the leading truncation error
term may be swamped by noise. As an intuitive engineering
guess, aminimum 10 percent change (r = 1.1) is recommended.
Of course, provided that the coarse grid is within the asymp-
totic range, the estimates are more reliable for larger r, for

grid refinement. . . - :
A reviewer has expressed skepticism that one really can learn

anything about grid convergence by changing the resolution -
by only 10 percent. It is intuitively obvious that the -error
estimates are more. reliable for larger r, for grid refinernent.
It is perhaps less obvious that the opposite is true for grid
coarsening, i.e., when we keep the answers of the finer grid.
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Then it should be clear that there is .moré additional infor-
mation, and therefore sharper error estimates, available for r
~ 1 than for r >> 1 (limited only by noise pollution from

_round-off and incomplete iteration errors). For example, con-

sider a fine grid using 100 nodes. A coarse grid calculation
using 90 nodes (r = 1.1111 ...) contains more information
(and is more expensive) than a coarse grid calculation using

" 50 nodes (r = 2). A set of easily reproduced calculations was

performed on the steady-state Burgers equation with u(0) =
1 and u(1) = 0 (suggestive of stagnation flow), Re = 10, and
p = 2, with a fine grid of 100 interior nodes and coarse grids
from 25 to 99 nodes. The error estimator for f = du/dx at x
= 1 obtained using the coarse grid of 90 nodes (r = 1.1111,
or a factor of 0.9 coarsening) is 3.2 times more accurate than
the error estimator obtained using the coarse grid of 50 nodes
(r = 2, or a factor of 0.5 coarsening).

Independent Coordinate Refinemeni and Mixed Order
Methods

The simplest mode in which to apply the proposed Grid
Convergence Index is to use a single parameter r to refine/
coarsen the grid in all coordinates, space and time. However,
there are often good reasons for not doing this. In boundary
layer calculations (whether using boundary layer equations,
full Navier-Stokes equations, or something intermediate) it is
often the case that grid convergence is easy to establish in the
‘Jongitudinal direction (being essentially dictated by the free-
stream flow, which is not sensitive to Reynolds number) but
is more probiematical in the transverse direction, being sen-
sitive to Re. Also, in time-dependent problems, it is much easier
to develop a code that is solution-adaptive in the time-step
than in the spatial grid, so that time discretization errors might
be independently controlled (e.g., see Roache, 1991, 1992A,
1993) and the systematic grid refinement test would be re-
stricted to the spatial grid.

In such a case, the multidimensional theory indicates that
the error estimates can be obtained orthogonally. (The func-
tions gi, g, etc. in Eq. (1) for the x direction now depend on
Ay, and a constant (in X) term appears, but it may be verified
that these do not affect the algebra of solving for g, even with
cross derivatives present from nonorthogonal grids, at least
forp = 1 or2.)Ineach coordinate direction, Eq. 10 or 14 is

applied separately, with r, & re # Ty, €tC., and the resulting_

Grid Convergence Indexes are added.
GCI=GCI + GClL+ GCI, + GCI,, etc. (16)

The additional error made by this ‘‘alternating direction
Richardson extrapolation,”” compared to refinement in all di-
rections at once, is not merely heuristic but is ordered (it im-
proves for fine grids and for r ~ 1) and small enough for the
procedure to be practical. It is important to note that the
procedure must be performed globally, i.e., with complete
global solutions obtained for each refinement in independent
coordinate directions; attempts to apply the extrapolation pro-
cedure by lines do not produce ordered or usable error esti-
mates. _

Consistent Richardson Extrapolation error estimators can-
not be obtained from just two calculations (a coarse and a
fine grid calculation) when different r are used in different
coordinate directions, because there is no basis for separating
out the directional contributions. In this case, a conservative
GCI should be used, based on the smallest directional r. For
example, in a 2-D steady flow calculated in a fine grid of 100
% 100 cells and a coarse grid of 50 X 75 cells, unless other
theoretical considerations apply, we would have to conserv-
atively attribute the change in solution to the more modest
grid refinement, and use r = 4/3 to calculate the fine-grid GCI

from Eq. (10). . ; ' !
A similar situation occurs with mixed-order methods, e.g.,
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the not uncommon situation of a method with first-order time
accuracy, and second-order space accuracy. A conservative
apgroach would be to use p = 1 in Eq. (10), buta better
estimate would be obtained using separate grid convergence
studies in space and time, using p = 1 for the time contribution
and p = 2 for the space contribution from Eq. (10), and simply
adding the results asin Eq. (16). For hybrid methods that shift
locally to two-point upstream differencing for large cell Re,
the conservative p = 1 must be used. For methods which use
higher order stencils for advection than for diffusion, the error
will be dominated asymptotically by the lower order term. For
example, for solutions calculated by Leonard’s ULTIMATE
method (Leonard, 1991) which is third order for advection,
the GCI would have to be reported conservatively using p =
2 in Eq. (10) or (14).

Non-Cartesian Grids, Boundary Fitted Grids,. Unstruc-
tured Grids, Adaptive Grids ’

The procedures for calculating GCI definitely apply to non-
cartesian grids, with special considerations and caveats.

The Taylor series basis of Richardson Extrapolation applies
to stretched orthogonal and nonorthogonal grids as long as
the stretching is analytical. It is cleanest to apply in the trans-
formed plane (¢, 7, {) where r is defined as above. The order
of the extrapolation accuracy will now be affected by the order
and iterative convergence of the grid generation equations.
Shirazi and Truman (1989) found a surprising sensitivity of
the error estimates to discretization of metrics and Jacobians,
and to incomplete iterative convergence. For another example,
if strong exponential source terms are used (e.g., near trailing
edges of airfoils) which depend strongly on h (e.g., see Thomp-
son et al., 1985) then a refined-grid generation will pollute the
Richardson Extrapolation.

However, even if the grid generation equations are not con-
verged, making the actual Richardson Extrapolation less de-
pendable, it is still recommended that the proposed uniform
GCI be reported rather than the simple raw data of e. '

Solution-adaptive grid generation codes may have their own
internal local error estimators. More often, solution adaptive
grid generation of the redistribution or enrichment types
(Thompson et al., 1985; Knupp and Steinberg, 1993) is not
based on any error estimator but on solution behavior (gra-
dient, curvature, or simply resolution requirement) which is
only loosely related to local error (which in turn is very loosely
related to thé global error of interest herein). In such a case,
the GCI reporting procedure recommended herein can be ap-
plicable if the solution-adaptive procedure is used only to ob-
tain the base grid solution. This grid can then be changed
nonadaptively, perhaps refined by a higher-order interpolation
or coarsened by simply removing every other point as in Zingg
(1993) and the GCI of Egs. (10) or (14) applied to this new '
grid. However, practical coding difficulties exist for time-
dependent solution-adaptive grids, and it is not clear how to
perform meaningful global error estimation nor uniform grid
convergence reporting in this important situation. (See also
remarks on unstructured grids below.)

Another difficulty occurs for unstructured grids. If the base
grid is unstructured, the GCI procedure would still apply if
one used a systematic method of grid refinement or coarsening,
e.g., refining each base grid triangle into four new triangles
gives r = 2 .for use in Eq. (10). However, if the coarsening/
refinement is also unstructured, as occurs in some algorithms
and in user-interactive grid generation codes, there is no sys-
tematic and quantifiable grid refinement index like r to use in
Egq. (10). Such grid refinement FEM studies are customarily
reported simply in terms of the total number of elements used
in the coarse (V) and fine (V) grids. Use in Eq. (10) of an

effective r= (N1/N2)"?, : un
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where D is the dimensionality of the problem, and reporting
the GCl is clearly preferable to simply reporting e. But it does
not have the firm basis of a structured grid refinement, and
may significantly underestimate or overestimate the accuracy,
depending on whether the grid refinement algorithm (or the
intuition of the interactive user) refined the grid in the critical
areas or not.

For unstructured gr]d refinement and (structured or unstruc-
tured) grid adaption, I suppose it should be the burden of the
algorithm developer to convince the reader/user that the local

grid adaptivity process (sometimes based on a /ocal error es-

timator) can be usefully correlated with a meaningful engi-
neering global error estimate, which is the real interest. This
is very difficult to accomplish convincingly for any problem
which a fluid dynamicist would consider non-trivial (mainly
because local truncation errors are advected downstream) but
it can be done; see Schonauer et al., 1981).

Shocks, Discontinuities, Singularities

In both his 1910 and 1927 papers, Richardson already con-
sidered the effect of singularities on the extrapolation proce-
dure. These cases must be considered individually. If the form
of the singularity is known a priori, it may be removed ana-
lytically. If unknown, its presence may be detected by checking
to see if the asymptotic range has been reached (see below).
Shocks and other discontinuities (e.g., contact surfaces) in-
validate the Taylor series basis of Richardson Extrapolation,
but unless the flow contains large numbers of complex shock
patterns, the GCI procedure herein would still seem to have
validity and be recommended. As pointed out by Ferziger
(1993), a more appropriate error measure here might be the
shock position. (Further experience w1th complex shocked flows
is needed.)

Note also that Blotmer (1990) has shown how the concept
of Richardson Extrapolation can be applied to systematically
estimating the error due to artificial dissipation terms used in
hypersonic shock calculations. The contribution of these terms
to the proposed GCI must also be calculated orthogonally to
the other terms. If these terms are not estimated separately,
the grid convergence tests will be polluted, since the (nonlinear)
shock dissipation terms depend on A, and therefore the con-
tinuum problem being approximated changes from grid to grid.
See also Kuruvila and Anderson (1985). (This is the same
difficulty that can appear with grid generation equations, noted
above.)

Also, the theory of Richardson Extrapolation is not appli-
cable to nonlinear flux limiters, but again we expect these to
be local applications, and still recommend the reporting of
GCI over simply reporting the raw data for ¢, but also rec-
ommend more detailed investigation, e.g., perhaps 3 grids (see
below). The point is that the presence of shocks, other dis-
continuities or singularities can complicate grid convergence
studies whether or not the proposed GClI is used for reporting
the results, so these complications do not constitute a criticism
of the proposed GCI.

Achieving the Asymptotic Range

The theory of Richardson Extrapolation, and therefore of
the proposed Grid Convergence Index, depends on the as-
sumption that the Taylor series expansion (or at least, the
definition of the order of the discretization implied by Eq. (4))
is valid asymptotically, and that the two grids are within the
asymptotic range. For smooth elliptic problems, this is easy
to achieve. (A second-order accurate discretization of a Laplace
equation with smooth boundary values is well behaved over
virtually all discretizations.) For Reynolds numbers >>1, it is
more problematic, and more than two grid solutions are re-
quired. The methodology.proposed herein does allow for de-
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-of transport in porous media (WIPP PA Dept.,

tecting this situation in a straightforward manner, provided
that the order of the method, p, is uniform.

If an exact solution is known to a model problem, we can
monitor -

E,=error/H (18)

as h is refined. Then the (approxxmate) constancy of E, is a
faithful verification of the order p and an indication that the
asymptotic range is achieved (e.g., see Richardson, 1927; Stein-
berg and Roache, 1985; Roache et al., 1990; Blottner, 1990;
Roache and Knupp, 1993). In the practical case wherein the
exact solution is not known, we perform at least three grid
solutions and calculate two GCI, from fine grid to intermediate
(GCl,;) and from intermediate to coarse grid (GCl,;). Then
the (approximate) constancy of £, = GCI/(3#°), or

GCIE =r? GCIIJ

indicates that the asymptotic range is achieved.

This indication that the asymptotic range has been achieved
is usually faithful, in the author’s experience (Roache, 1982;
Roache et al., 1990; Roache and Knupp, 1993). But an ex-
ception (and unfortunately, an important one) occurs in prob-
lems with multiple scales of solution variation wherein a finer
scale of the problem variation has been completely missed in
the grid refinements. For example, in dual-continuum models
1992) the time
scale for diffusion and storage in the material matrix blocks
may be orders of magnitude less than the time scale for es-
sentially advective transport in the fracture system. Time-step
refinement may indicate no substantial change in the results
(i.e., a false indication of convergence) if the time step is of
the order of the advective time scale. Similar situations occur
in turbulent boundary layer studies where some minimal vis-
cous sublayer resolution is required (see Wilcox, 1993; Shirazi
and Truman, 1989) and in chemically reacting flows which can
have more time scales than species. Adaptive ODE solvers are
good at detecting multiple time scales, but in multidimensional

(19

flows, at present there seems to be no substitute for an in- -

dependent estimate (from theory or experiment) of the physical
scales of interest.

Since so many authors are reluctant to perform even the
most minimal grid convergence tests with two grids (Roache,
et al., 1986; Roache, 1990), it may seem scrupulous to rec-
ommend tAree grids as a matter of course. In fact, it is required

- to be sure that the calculations are in the asymptotic range, if

this is not already inferred from experience with a ‘‘nearby”
calculation as in, e.g., Nguyen and Maclaine-Cross (1988) or
Blottner (1990). But the presently proposed GCI is an easier

improvement over the simplistic reporting of raw data on e.

G. de Vahl Davis (1983), in his classic benchmark calcula-
tions of a buoyancy-driven cavity, indicated local convergence
rates of /ess than first order for the relatively coarse grids used,
even though the method was asymptotically second-order ac-
curate. In the absence of such meticulous work as that of de
Vahl Davis, the reporting of a GCI based on the assumed p
= 2 would be preferable to simplistic reporting the raw data
of ¢, but if there is any indication of less-than-theoretical con-
vergence rates, the more conservative estimate with GCI eval-
uated from Eq. (10) or (14) using p = 1 should be reported.

Method of Characteristics and Spectral Methods

It is not clear how or if the proposed GCI would be applicable
to calculations obtained by the classic method of character-
istics, as used in gas dynamics, because of the possibly dis-
continuous solutions and the irregular gridding. The various
Modified Method of Characteristics (e.g., see references in
Roache, 1992b) will produce more systematic grid refinement,
but the concep: of “order" is more tenuous for the Flux-Based'
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MMOC (as evidenced by the fact that the accuracy improves
as the Courant number increases above 1), and the GCI may
not be applicable. Similarly, for spectral and pseudo-spectral
methods, and certainly for spectral elements, different ex-
trapolation procedures would be required. It is not known at
this time how well the GCI would apply or could be extended.

* Nonsmooth Property Variation

- In aerodynamics problems, one typically deals with smooth
property variations over modest ranges, if not with constant
property problems. In groundwater flow and “transport cal-
culations, uncertainty is much greater, and sensitivity studies
are often performed with Monte Carlo techniques used to
generate property variations of orders of magnitude, even from
one grid block (finite volume) to the next (WIPP PA Dept.,
1992). Geologic layering produces discontinuous variations in
properties of several orders of magnitude.

In these situations, it is not advisable to use noninteger grid
refinement parameters r, because additional-errors would be
introduced by interpolation of properties. This confusion would
be aggravated by the common use of harmonic averaging for
properties (e.g., Roache, 1991, 19924, 1993). Likewise, grid
coarsening is not advisable if a coarsened grid would not resolve
the scale of the property variations (often the case for expensive
two-phase flow calculations, e.g., WIPP PA Dept., 1992). The
only approach applicable is a brute-force grid refinement by
a factor of 2, which avoids any necessity for interpolation of
properties.

The GCI proposed herein still has two contributions to such

- problems, (@) in including the effect of the order of the method
_ pin Eq. (10), and (b) in economizing a consistent treatment
of further grid refinement. That is, a third grid -(second re-
finement) need not involve the expense of another grid dou-
bling (to a quadrupling of the base grid resolution) but can be
done on a tripled grid, and reported consistently with the
proposed GCI. The difference in computer time between cal-
culating the sequence (base Ag, 1/2A, 1/ 4h,) and the sequence
(base hg, 1/2ho, 1/3hy) can be significant. Consider an optimal
method with base-case computer time = 75 in 2-D and T in
3-D, and time-step resolution increased in proportion to the
spatial grid resolution. The quadrupling sequence costs 73T,
in 2-D while the tripling sequence costs 3673; in 3-D, the costs
are 27373 and 9873, respectively. The savings of a factor of 2
in 2D and somewhat less than 3 in 3D will be greatly amplified
if suboptimal direct solution methods are used (WIPP PA,
1992). )
A more fundamental question arisés when geostatistical
_methods are used to generate-particular realizations of grid-
block property variations with specified statistical parameters.
Only the statistical results are of interest, not the solutions of
the individual realizations. The question is then, should the
grid refinement studies be performed separately from the geo-
statistical realizations? That is, should the solution of the par-
tial differential equations be converged on finer grids with the
assumed continuum property variation fixed at a geostatisti-
cally generated coarse-grid distribution, or should the geo-
statistical generation also change as the grid is refined? This
is not a trivial question, and although definition of a fixed
continuum problem for the grid refinement studies is concep-
tually easier, it is clear that substantial computer savings could
accrue to the combined convergence approach. In either case,
the grid increments should be less than (be able to .partially
resolve) the correlation length of the property variation.

Example ;

A reviewer has requested a simple example of the calculation
of a Grid Convergence Index. I choose the easily reproduced

" case of a steady-state Burger’s equation
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—uuett/Re=0, . u(0)=1, u(l)=0 (20)
for Re = 1000 solved with second-order centered differences
on a uniform grid, and evaluate the quantity f = du/dx.at-x
= 1. Using a fine grid calculation with 2000 cells, we obtain"
fi = —529.41. Then we coarsen the grid to 1600 cells (r =
1.25) and obtain f; = — 544.48. The quantity typically reported
(from Eq. (7)) would be lel = 100 percent = (f, = /1)//i =
2.85 percent. The factor (~* —. 1) is (1.25* — 1) = 0.5625.
The magnitude of the Richardson Extrapolation error esti-
mator for the fine grid solution from Eq. (6) is |E,] = lel/
(r? — 1) = 2.85 percent/0.5625 = 5.07 percent. The fine grid .
value of the Grid Convergence Index from Eq. (10) is GClI[fine
grid] = 3lel/(P — 1) = 3 » 2.85 percent/0.5625 = 15.20
percent. Comparison with the exact solution foae = — 500.00
indicates that the exact magnitude of the fine-grid error A, is
100 percent » 1(fs — foae)/fexaa! = 100 percent « | —529.41
+ 500.001/500.00 = 5.88 percent. As is typical, the Richard-
son Extrapolation error estimator E, is not conservative (5.07
< 5.88 percent), whereas the GCI is conservative and quite
50 (15.20 > 5.88 percent), in the spirit of a 20 error band.

If the coarse grid solution (or the coarse grid solution to a
nearby problern) were to be used, the Richardson Extrapolation
error estimator would be increased to 1| + lel = 5.07 +
2.85 percent = 7.92 percent. The GCI would be increased by
3lel as in Eq. (15b) to GCl[coarse grid] = 15.20 + 3 - 2.85
percent = 23.75 percent. The actual magnitude of the coarse
grid error is 100 percent ¢ 1(fs = feaa)/. /foxace| = 100 percent
. | —544.48 + 500.001/500.00 = 8.90 percent. Again, the
Richardson Extrapolation error estimator El is not conserv-
ative for the coarse grid (7.92 < 8.90 percent), whereas the
GCl is conservative (23.75 > 8.90 percent).

Conclusion -

The quantification of uncertainty in CFD publications has
been noticeably improving, with minimal grid refinement stud-
ies becoming more common. Unfortunately, it has not always
been possible to uniformly interpret these studies.

- In this paper, it has been proposed that the results of sys-
tematic grid refinement studies be uniformly reported using
the Grid Convergence Index of Eg. (10) or (14), which is based
upon a grid refinement error estimator derived from the theory
of the generalized Richardson Extrapolation. While not an-
swering all questions involved with verification of a calcula-
tion, this proposed method at least enforces some uniformity
in the reporting and is based upon an objective asymptotic
estimate of the grid convergence error, although the GCl is
not a true error bound. '

Since the GCI will often be less optimistic than the simplistic
¢ of Eq. (7), especially for the all-too-popular first-order meth- .
ods, some reluctance of authors may be anticipated. Fortu-
nately, the formulas are simple enough to be applied aposteriori
by editors and reviewers. It is urged that they do so in the
review process to continue improving the quality of CFD pa-
pers. To quote Ferziger (1993), *... the frequently heard ar- .

. gument ‘any solution is better than none’ can be dangerous in

the extreme. The greatest disaster one can encounter in com-
putation is not instability or lack of convergence but results
that are simultaneously good enough to be believable but bad
enough to cause trouble.” ’
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