
Comput. Methods Appl. Mech. Engrg. 259 (2013) 154–165
Contents lists available at SciVerse ScienceDi rect

Comp ut. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/locate /cma
A parallel local timestepping Runge–Kutta discontinuous Galerkin
method with applications to coastal ocean modeling
0045-7825/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cma.2013.03.015

⇑ Corresponding author.
E-mail addresses: clint@ices.utexas.edu (C. Dawson), ctrahan@drc.com (C.J.

Trahan), kubatko.3@osu.edu (E.J. Kubatko), jjw@nd.edu (J.J. Westerink).
Clint Dawson a,⇑, Corey Jason Trahan b, Ethan J. Kubatko c, Joannes J. Westerink d

a The Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, United States
b The Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory, Vicksburg, MS 39180, United States
c Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, United States
d Department of Civil and Environmental Engineering and Earth Sciences, The University of Notre Dame, Notre Dame, IN 46556, United States
a r t i c l e i n f o

Article history:
Received 18 September 2012
Received in revised form 22 March 2013
Accepted 24 March 2013
Available online 4 April 2013

Keywords:
Local timestepping
Multirate methods
Shallow water equations
Runge–Kutta discontinuous Galerkin
methods
Tidal flows
Hurricane storm surge
a b s t r a c t

Geophysic al flows over comp lex domains often encompass both coarse and highly resolved regions.
Approxim ating these flows using shock-capturing methods with explicit timestep ping gives rise to a Cou-
rant–Friedrichs–Lewy (CFL) timestep constraint. This approach can result in small global timesteps often
dictated by flows in small regions, vastly increasing computational effort over the whole domain. One
approach for coping with this problem is to use locally varying timesteps. In previous work, we formu-
lated a local timestep ping (LTS) method within a Runge–Kutta discontinuous Galerkin framework and
demonstrated the accuracy and efficiency of this method on serial machines for relatively small-scale
shallo w water applications. For more realistic models involving large domains and highly complex phys-
ics, the LTS method must be parallelized for multi-core parallel computers. Furthermore, add itional phys-
ics such as strong wind forcing can effect the choice of local timesteps. In this paper, we describe a
parallel LTS method, parallelized using domain decomposition and MPI. We demonstrate the method
on tidal flows and hurricane storm surge applications in the coastal regions of the Western North Atlantic
Ocean.

� 2013 Elsevier B.V. All rights reserved.
1. Introductio n

It is well-known that for explicit time discretizatio ns of conser-
vation laws, the timestep must satisfy a CFL condition for numeri-
cal stability. From a global perspective, the timestep calculated
from the CFL constraint is governed by the size of the smallest ele-
ment and the eigenvalues of the system. In many situations, for
example when the grid is unstructured or the physics is highly
localized, the element sizes and eigenvalues may vary significantly
over the domain, resulting in inefficiencies in regions where the lo-
cal CFL timestep could be much larger than the global CFL
timestep.

One way to deal with this problems is to use local timesteppin g
(LTS), where the step size varies on each element and is depende nt
on a local CFL condition. Such methods have been previously de-
rived and applied to general conservation laws by a number of
authors [1–7] and to a variety of applicati ons; see for example
[8–14]. This procedure is also similar to multirate methods and
adaptive mesh refinement (AMR) methods . The AMR method used
in the GeoClaw software [15,16] uses forward Euler timestepp ing
with timesteps dictated by local CFL constraints on each refine-
ment patch. The fluxes at the interfaces between levels are con-
served in the same way described here, and as described in [1].
The multirate methods described in [6] for conservation laws are
shown to preserve second order accuracy and the TVD property .

In previous work [8], we developed and applied an LTS method
within the framework of a second order Runge–Kutta discontinu-
ous Galerkin (RKDG) method, and applied the method to the solu-
tion of the shallow water equations. The accuracy and stability of
the method was examine d and comparisons with RKDG solutions
with no LTS were given for some relatively small-scal e model prob-
lems, with all test cases executed on serial computers. The shallow
water equations (SWE) are a set of hyperbolic partial differential
equation s (under the assumption of inviscid flow) which describe
the circulation of an incompressible fluid where the water depth
is much smaller than the horizontal waveleng th. The SWE are used
to study tides, storm surges and dam breaks, among other applica-
tions. In these problems, complex geometri es such as irregular
shorelines , channels, inlets, and regions with highly varying
bathymetr y, must be resolved to accurately capture the flow.
Therefore, shock-ca pturing methods based on unstructured finite
element discretiza tions, such as the discontinuo us Galerkin
(DG) method, are often applied to the SWE. DG methods are
capable of incorporating special numerical fluxes and stability

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cma.2013.03.015&domain=pdf
http://dx.doi.org/10.1016/j.cma.2013.03.015
mailto:clint@ices.utexas.edu
mailto:ctrahan@drc.com
mailto:kubatko.3@osu.edu
mailto:jjw@nd.edu
http://dx.doi.org/10.1016/j.cma.2013.03.015
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma

C. Dawson et al. / Comput. Methods Appl. Mech. Engrg. 259 (2013) 154–165 155
post-proces sing into the solution to model highly advective flows
without excessive oscillations. Additionally, DG methods are
highly parallel and allow for locally varying polynomial orders.
Extensive previous work describin g the developmen t and applica-
tion of DG methods to shallow water systems by the authors and
collaborator s can be found in [17–22].

In this paper, we study the LTS method described in [8] for some
large-scale coastal flow applicati ons. These applications require
large domains, highly unstructured meshes with hundreds of thou-
sands to millions of elements, and can involve simulation of com-
plex phenomena over several days. Thus, efficient simulation
requires the use of parallel computing. The extension of LTS meth-
odologies to distributed memory parallel computers is nontrivial,
and we describe one approach which has proven effective for
two SWE applicati ons with complex physics, namely modeling ti-
dal flows in the Western North Atlantic ocean, and modeling coast-
al inundation due to hurricane storm surge in the Gulf of Mexico.
This approach builds upon a fully parallel RKDG shallow water sol-
ver develope d by the authors and several collaborators [18,19],
where the parallelization is achieved through domain decomposi-
tion and MPI.

The rest of this paper is arranged as follows. In the next section,
we outline the RKDG method and discuss the impleme ntation of
the LTS method in a parallel computing environm ent. In Section 3,
we discuss the shallow water model, and study the LTS method in
the context of the two applicati ons mentioned above. In particular ,
we investiga te the overall efficiency of LTS in parallel vs. standard
global timestepp ing, and how well LTS performs within a complex
coastal modeling system.

2. Numerical methods

2.1. The discontinuous Galerkin finite element method

In this section we briefly outline the DG method. Consider the
hyperbolic equation ,
@w
@t
þr � FðwÞ ¼ s: ð1Þ

To formulate the semi-disc rete DG method for (1), the physical do-
main, X, is first partitio ned into non-overla pping finite elemen ts, Ki

for i ¼ 1;2; . . . ;N. If PkðKiÞ is defined as the space of polynom ials of
degree 6 k over elemen t i, the DG metho d can be formula ted as
seeking a piecewise smooth function whjKi

2 PkðKiÞ which 8i
satisfies:Z

Ki

@wh

@t
vh dx�

Z
Ki

FðwhÞ � rvh dxþ
Z
@Ki

bF � nivh ds ¼
Z

Ki

svh dx;

ð2Þ

where vhjKi
2 PkðKiÞ is the test function, and F̂ is an approxim ation

to the normal flux at the elemen t boundaries . Here ni is the unit
outward normal to @Ki.

Eq. (2) is obtained by multiplying the original equation by a test
function, integrati ng over each element and integrating the diver-
gence term by parts. The numerical flux is required since the dis-
crete solutions allow for discontinuiti es between elements. For
nonlinear equations, an approximate Riemann solver is used to de-
fine the numerical flux along element boundari es. Given a face be-
tween two elements , we label the elements on each side of this
face K� and Kþ, and let n be the normal vector to the face which
points from K� to Kþ, then

F̂ � Fn

and F̂ depends on the solution on either side of the face, that is,

F̂ ¼ F̂ðwh;�;wh;þÞ;
where wh;� ¼ whjK� with similar definition for wh;þ. For elemen ts on
the boundary, the normal n is assumed to be the outward normal to
the boundary of the domain, and wh;þ is chosen to enforce external
boundar y conditio ns; see [17]. Many different numerica l fluxes F̂
have been proposed in the literature. For the results presen ted
below, the local Lax–Friedrichs flux is used.

The discrete solution and test functions are then expanded on
element Ki with s degrees of freedom:

whjKi
¼
Xs

j¼1

~wj;iðtÞ/jðx; yÞ; vhjKi
¼
Xs

k¼1

~vk;iðtÞ/kðx; yÞ; ð3Þ

where f~w; ~vg are the basis function degrees of freedom, and f/kg
are the basis functions. Using (3) and (2), Eq. (1) can be written as
system of ODEs

M
d ~w
dt
¼ b; ð4Þ

where Mj;k ¼
R

Ki
/j/k dx is the mass matrix and

~w ¼ ½ ~w1;1; ~w2;1; . . . ; ~ws;1; ~w1;2; . . . ; ~ws;N �T ; ð5Þ

b ¼ ½R1ð/1Þ;R1ð/2Þ; . . . ;R1ð/sÞ;R2ð/1Þ; . . . ;RNð/sÞ�
T
; ð6Þ

with,

Rjð/iÞ ¼
Z

Kj

ðFðwhÞ � r/i þ s/iÞ dx�
Z
@Kj

F̂ � nj/i ds: ð7Þ
2.2. Runge–Kutta time discretization

For time integration, the system of equation s

d ~w
dt
¼ Lhð ~wÞ �M�1 b ð8Þ

is discretized in time using an explicit, strong stability preserv ing
(SSP) Runge–Kutta scheme. These methods were originally referred
to as total variation diminishi ng methods and were introduce d by
Shu and Osher (see Refs. [23,24]). For linear basis functions in space,
general ly a second order SSP Runge–Kutta scheme is used. Given a
timestep Dt, and tn ¼ nDt; n ¼ 0;1; . . ., the method is defined as

~w0 ¼ ~wðtnÞ;
~wi ¼ ~wi�1 þ DtLhð ~wi�1Þ; for i ¼ 1;2;

~wðtnþ1Þ ¼ 1
2
ð ~w0 þ ~w2Þ:

ð9Þ

Thus, the method consists of taking two forward Euler steps, and
averag ing the final result with the solution at the previous timestep .
This method is also known as Heun’s method.

2.3. Slope limiting and wetting and drying

Other aspects of the DG implementation, such as slope limiting
and wetting and drying, which are more specific to the shallow
water applicati on, are described in [8] and the references therein.
Therefore we will not repeat them here except to say that in the
numerica l results below, we use a vertex-based slope limiter
(the Bell–Dawson–Shubin limiter) as described in [25,26], and
the wetting and drying algorithm described in [21] is used.
2.4. Local timestepp ing (LTS)

While the RKDG method described above allows for any
polynomi al order approximat ing space and higher order time-
stepping, we will restrict our attention in the remainder of this
paper to piecewise linear approximat ions and second-order SSP

156 C. Dawson et al. / Comput. Methods Appl. Mech. Engrg. 259 (2013) 154–165
Runge–Kutta timestepping. The LTS method that we employ is
described in [8], however we review it again here for complete -
ness. It is based on a simple modification of the second order SSP
Runge–Kutta method described above, to allow for different
timesteps in different regions, and to conserve mass.

We also remark that the LTS scheme discussed here follows in
spirit the method originally described and analyzed in [3] for the
one-dimensi onal conservation law ut þ f ðuÞx ¼ 0. In that work, a
local timestepp ing method was derived from an RKDG scheme,
with piecewise linear approximat ions in space and Heun’s method
in time. It allowed for interfaces separating elements with time-
steps differing by a factor M, with local CFL constraints imposed
on each element. The method was shown to satisfy a strict maxi-
mum principle, and is hence stable, with a suitable slope-limiter
applied to the linear component of the numerica l solution. While
the stability proof does not extend to the shallow water equations
defined over very general domains and discretized on highly
unstructured triangular meshes, the analysis in [3] does suggest
that the approach described here could have similar stability prop-
erties. Our numerical tests to date suggest that this is in fact the
case.

To describe the LTS scheme, we consider decomposing an
example domain, X into two zones, X1 and X2, see Fig. 1. These
zones are separated by a one-dimensi onal interface r, indicated
by the dashed line. Each zone consists of some number of ele-
ments. In Fig. 1 X2 has four rectangu lar elements, and X1 has eight
rectangular elements which are half the size of the elements in X2,
which would lead to a more severe CFL timestep constrain t in X1

than in X2. Each zone is assumed to have its own timestep,
fDT1;DT2g, assigned so that (1) each satisfy its subdomain CFL
constraint and (2) DT2 ¼ MDT1, for some positive integer M.

Assume the solution is given over the whole domain at time tn.
In order to propagate the solution to time tnþ1 ¼ tn þ DT2, M sub-
timesteps within X1 are taken. To evaluate numerica l fluxes at
the interface r, the X2 states are fixed at time tn. Subsequently,
X2 is updated to tnþ1 by taking one timestep. To calculate the fluxes
at r as seen from X2, an average over the M X1 fluxes is used.

More precisely, suppose K1 and K2 are two neighbori ng ele-
ments whose common boundary @K1 \ @K2 intersects the local
timesteppin g interface r. Assume K1 is in the subdomain X1 and
K2 is in X2. Suppose that the normal on @K1 \ @K2 points from K1

to K2; i.e., K1 is K� and K2 ¼ Kþ in the notation above. Let
w0

h ¼ whðtnÞ and w0;l
h ¼ whðtn þ lDT1Þ, for l ¼ 0; . . . ;M.

Then combinin g (9) and (2), the RKDG method on K1 at time
tn;l � tn þ lDT1 is defined by
Fig. 1. Division of X into two zones with different timesteps.
Z
K1

wi;l
h vh dx ¼

Z
K1

wi�1;l
h vh dxþ DT1

Z
K1

Fðwi�1;l
h Þ � rvh dx

� DT1

Z
@K1=r

bFðwi�1;l
h;� ;w

i�1;l
h;þ Þ � n1vh ds� DT1

�
Z
@K1\@K2

bFðwi�1;l
h;� ;w

0
h;þÞ � n1vh dsþ DT1

�
Z

K1

svh dx ð10Þ

for i ¼ 1;2. Here we have split the boundary @K1 into the part which
does not intersec t r, i.e., @K1=r, and the part which does intersec t r,
i.e., @K1 \ @K2. We are assuming that on @K1=r no local timestep -
ping is occurring . At each interme diate timestep tn;lþ1 we set

w0;lþ1
h ¼ 1

2
ðw0;l

h þw2;l
h Þ ð11Þ

for l ¼ 0; . . . ;M � 1. Then on K2, the RKDG method is defined by Z
K2

wi
h vh dx ¼

Z
K2

wi�1
h vh dxþ DT2

Z
K2

Fðwi�1
h Þ � rvh dx

� DT2

Z
@K2=r

bFðwi�1
h;�;w

i�1
h;þÞ � n2vh ds�

XM�1

l¼0

DT1

�
Z
@K1\@K2

bFðwi�1;l
h;� ;w

0
h;þÞ � n2vh dsþ DT2

�
Z

K2

svh dx ð12Þ

for i ¼ 1;2. Finally on K2

whðtnþ1Þ ¼ 1
2
ðw0

h þw2
hÞ: ð13Þ

Combining (10)–(13), setting vh ¼ 1 on K1 and K2, and noting that
n1 ¼ �n2 on @K1 \ @K2,Z

K1[K2

whðtnþ1Þdx ¼
Z

K1[K2

½whðtnÞ þ S�dx

where S is an approxim ation to the time integral of the source/sink
terms in the model over the time interval ½tn; tnþ1�. Thus, in this
sense, mass and momentum are conserve d in the region of the
LTS interface.
2.5. Implementa tion and parallelization

The LTS method described above allows for a fairly general
timestepp ing approach with one assumption, that neighbori ng ele-
ments are assumed to have timesteps which differ by some integer
M. In order for the coding of the LTS method not to be overly cum-
bersome , we assume that each element K in the discretiza tion of X
is placed into a timesteppin g group or level. Level 1 will denote the
elements with the smallest timestep, level 2 the next smallest, and
so forth. We will denote the total number of levels by N. For sim-
plicity we will also assume that M is constant from one level to
the next.

Elements are sorted into levels by first calculating a local CFL
timestep. On each element K, we compute a local timestep

DtK ¼ a
�hK

kK
ð14Þ

where a is a CFL paramete r which is Oð1Þ, typically a ¼ 1=
ffiffiffi
2
p

; �hK is
the minimum distance between the centroid of the element and the
midpoint of the edges of K, and kK is an estima te of the maximum
eigenv alue of the Jacobian associated with the normal flux F̂. Let
DTl; l ¼ 1; . . . ; �N denote timesteps associated with each timestep -
ping level, where MDTl ¼ DTlþ1. We assume that

C. Dawson et al. / Comput. Methods Appl. Mech. Engrg. 259 (2013) 154–165 157
DT1 6min
K

DtK :

Then element K is placed into timestep group l if

DTl 6 DtK < DTlþ1: ð15Þ

If DtK P DT �N then element K is placed into level �N. The element
timestep s are then reset, thus if element K is in group l, then
DtK DTl.

In [8], this approach was investigated for several shallow water
applications and observed to preserve second order accuracy for a
problem with an analytical solution, and it was shown to give solu-
tions comparable to those computed using a global CFL timestep
(i.e., �N ¼ 1). Furthermore, on serial machines, the method was
shown to be nearly optimal in terms of computational efficiency.

For large-scale applications of interest, solutions cannot be
computed in serial due to memory and CPU limitations, therefore
parallel computing is necessary. We have investiga ted the imple-
mentation of the LTS method in parallel, again implementing the
LTS method in a DG shallow water model. The parallel perfor-
mance of this model without LTS has been investigated in other pa-
pers, most notably in [18]. The parallelization approach is based on
domain decompositi on, where the domain is first decomposed
using the METIS software library [27,28]. METIS divides the do-
main into overlappi ng subdomains with ‘‘ghost’’ regions based on
a graph-par tition of the nodes that make up the finite element
mesh. In our implementati on, the ghost region consists of elements
which are shared by neighbori ng processors. MPI is used to pass
solution informat ion defined on the ghost elements to the neigh-
boring processor . METIS attempts to divide the domain to balance
the work-load among processors, to preserve locality of the ele-
ments and nodes within the subdomain and to minimize the ‘‘sur-
face-to-volum e’’ ratio; that is, to keep the ratio of ghost nodes to
resident nodes low in order to reduce the communications over-
head. For improved load balancing, METIS allows the user to
weight nodes in the finite element mesh using an estimate of the
‘‘work’’ related to the node; for example, by estimating the maxi-
mum amount of work performed in elements which are attached
to the node.

For a fixed global timestep, the parallelization of the DG method
is quite straightforwar d. Each element has a fixed amount of work,
takes the same timestep, and parallelizati on is achieved by each
subdomain communicating with neighboring subdomains at the
end of each Runge–Kutta timestep. The communicati on remains
constant throughout the simulation. For LTS, the situation is much
more complicated.

First, there is the question of load balancing. The amount of
work per element depends on the local timestep. We have at-
tempted to address this in METIS by weighting each node by a fac-
tor which depends on the local timesteps associated with elements
attached to the node. This factor is determined by the number of
sub-cycling steps required for the element with the smallest time-
step to go from time tn to time tnþ1. The local timestep may also
change during the course of the simulation, therefore in reality
the load should be dynamical ly re-balanced during the simulation.

Second, there are communication issues associated with LTS.
For example, consider a 1-D example as in Fig. 2. We picture four
Fig. 2. Example of LTS in one space d
elements labeled i� 2; i� 1; i and iþ 1. There are �N ¼ 3 timestep-
ping levels with M ¼ 2. Elements i� 2 and i� 1 are on level 1, with
the smallest timestep, element i is on level 2 and iþ 1 on level 3.
Now assume elements i� 2; i� 1 and i are on processor 0 (PE0),
and i� 1; i and iþ 1 are on the neighboring processor 1 (PE1), with
elements i� 1 and i in the ghost region. Both processor s PE0 and
PE1 compute the solution on these two elements, but element
i� 1 is ‘‘owned’’ by PE0 while element i is ‘‘owned’’ by PE1. For
the solution to be computed correctly in the ghost region, informa-
tion in element i� 1 must be passed from PE0 to PE1 at each level 1
timestep, and the informat ion in element i must be passed from
PE1 to PE0 at all level 2 timesteps.

In general, each timesteppin g level must communicate informa-
tion with neighboring processors which share elements on the
same level, if these elements are within the ghost region. There-
fore, we have implemented a message-pas sing construct which is
level-dep endent. This may reduce parallel efficiency in the sense
of strong scalability, since not all subdomains may have the same
number of elements on each level, in fact some subdomains may
have no elements on a given timestepping level. Or, subdomains
may have elements within a level but none in the ghost region,
while other subdoma ins may have many elements within a certain
level in the ghost region, and thus require message-p assing. One
could try to address this problem by attempting to evenly divide
the elements on each level among the processors, however, this ap-
proach would most likely destroy locality, and result in a large
number of isolated elements on each processor.

In summary , determining an optimal parallel strategy for LTS is
complicated by several factors; however, as we will see in the re-
sults section below, LTS can still lead to an efficient and accurate
approach in parallel as it does in serial.

3. Applicati ons to the SWE

The SWE are based on the three-dimens ional Reynold’s aver-
aged Navier–Stokes equations for a Newtonian fluid. Averaging
these equations over the vertical depth of the water H and applying
kinematic and no-flow boundary condition s at the top and the bot-
tom, gives rise to the conservati ve form of the SWE:

@H
@t
þ Sp

@ðuHÞ
@x

þ @ðvHÞ
@y

¼ 0; ð16Þ

@ðuHÞ
@t

þ Sp

@ u2H þ 1
2 gH2

� �
@x

þ @ðuvHÞ
@y

¼ gSpH
@g
@x
þ ðsn

x � sg
x Þ þ Fx; ð17Þ

@ðvHÞ
@t

þ
@ v2H þ 1

2 gH2
� �

@y
þ Sp

@ðuvHÞ
@x

¼ gH
@g
@y
þ ðsn

y � sg
yÞ þ Fy; ð18Þ

where u and v are depth -average veloci ties, n is the water elevation
relative to the geoid, g ¼ H � n is the bathyme try relative to the
imension with �N ¼ 3 and M = 2.

Fig. 3. Western North Atlantic Ocean domain. Tidal elevations are specified at the
eastern boundary, all other boundaries are land boundaries. Contours represent
bathymetry in meters relative to the National Geodetic Vertical Datum of 1988
(NAVD88).

158 C. Dawson et al. / Comput. Methods Appl. Mech. Engrg. 259 (2013) 154–165
geoid, g is gravitatio nal acceleration , fsn
x;y; s

g
x;yg are the surface

(wind) and bed (bottom friction) stresses , respective ly, and Fx;y ac-
counts for other external forces,such as Coriolis force and tidal po-
tential. The paramete r Sp is a spheric al correction factor which
transform s the SWE in spheric al coordinat es /; k to Cartesian coor-
dinates x; y using an orthogon al cylindric al projectio n; see [19]. To
arrive at these equations , a number of assumptions have been
made; (1) the vertical accelerat ion of a fluid particle is small in com-
parison to the acceler ation of gravity, (2) shear stresses due to the
vertical velocity are small and (3) the horizont al shear terms,
f@2u=@x2; @2u=@y2; @2v=@x2; @2v=@y2g are small compared to vertical
shears, f@2u=@z2; @2v=@z2g.

For closure, the bed stress terms must be parameterized via the
depth-avera ged velocities. The bed stress is often approximat ed by
linear or quadratic functions of the velocities, however , we have
used a hybrid form proposed by Westerin k et al. [29] which varies
the bottom-fric tion coefficient with the water column depth:

sg
x ¼ uH Cf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

H

 !
; sg

y ¼ vH Cf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

H

 !
; ð19Þ

where,

Cf ¼ Cfmin 1þ Hbreak

H

� �fh
 !fc=fh

: ð20Þ

This formulation applies a depth-dep endent, Manning- type friction
law below the break depth (Hbreak) and a standard Chezy friction law
when the depth is greater than the break depth. For the application s
below, Cfmin is allowed to vary, since the bed surfaces change.

The wind surface stress is computed by a standard quadratic
drag law. Define

ŝn
x

q0
¼ Cd

qair

q0
jWjWx; ð21Þ

ŝn
y

q0
¼ Cd

qair

q0
jWjWy: ð22Þ

Here W ¼ ðWx;WyÞ is the wind speed sampled at a 10-m height
over a 15 min time period and qair is the air density. The drag coef-
ficient is defined by Garratt’s drag formula [30]:

Cd ¼ ð:75þ :06jWjÞ � 10�3: ð23Þ

We also remark that the wind surface stress is capped so that its
magnitud e is never greater than.002.

3.1. LTS in the SWE

The eigenvalues of the normal flux for the SWE are

k1;2 ¼ unx þ vny 	
ffiffiffiffiffiffi
gH

p
; k3 ¼ unx þ vny: ð24Þ

In shallow water simulation s, one typically initializes the simula-
tion by assum ing a ‘‘cold-s tart;’’ i.e., water elevations are initially
constant and water velocity is zero. Thus the largest eigenvalue ini-
tially is

ffiffiffiffiffiffi
gH

p
, and the local timestep s are computed by

DtK ¼ a
hKffiffiffiffiffiffiffiffiffi
gHK

p ð25Þ

where HK is the average water depth over the element. As the sim-
ulation progresses, the local timestep s may need to be adjusted
based on the water velocity . In many cases

ffiffiffiffiffiffi
gH

p

 junx þ vnyj

and the local timest eps can be fixed during the computa tion. For
more challengin g application s, for example, modeling hurricane
storm surges, this is not the case. Theref ore, at certain intervals dur-
ing the computa tion, we may recomput e the local timestep s by
DtK ¼ a
hK

kK
ð26Þ

where kK ¼ juK j þ
ffiffiffiffiffiffiffiffiffi
gHK

p
. Here juK j is the magnitu de of the cell aver-

age of velocity over the elemen t K. The elemen ts are then redistr ib-
uted among the levels on each processo r. That is, the number of
levels �N and the ratio M is left fixed, but elements are allowed to
move between levels, dependi ng on DtK .

3.2. Tidal flows in the Western North Atlantic Ocean

The first problem we consider is that of tidal flow in the Wes-
tern North Atlantic Ocean. The domain for this problem is pictured
in Fig. 3 and consists of part of the Atlantic Ocean, the Caribbean
Sea and the Gulf of Mexico. Tidal elevations are forced at the
60�W meridian open boundary. We utilize a standard tidal formula
consisting of 7 tidal components, three diurnal (K1;O1;Q 1) and four
semidirunal (M2; S2;N2;K2). The data can be found in [31]; see also
Table 1 in [32]. We also impose tidal potential as a body force with
the same 7 components. The simulation is cold-star ted and the tide
is ramped-up using a smooth hyperbolic tangent ramp function
over a 5 day time period. Other paramete rs in the model are:

� Cfmin ¼ :0025
� Hbreak ¼ 1:0 m
� fh ¼ 10
� fc ¼ :33333

These paramete rs were obtained from [32].
The discretizatio n of the domain into a mesh consisting of

98,635 elements and 52,774 nodes is plotted in Fig. 4.
Numerical studies comparing the RKDG SWE solution to tidal

gauge data for this problem are given in [18]; there it was demon-
strated that the DG method accurately reproduces measure d tidal
data. Here we consider various LTS scenarios and compare to RKDG
solutions with no LTS. These scenarios are representat ive of many
numerica l experiments which have been performed in this study.
The details of three particular LTS cases are outlined in Table 1.
For example, LTS-Case 1 divides the domain into four timestepp ing
groups or levels, with M ¼ 2 between each level. The smallest
timestep Dtmin ¼ 2 s, thus the timesteps on each of the four levels

Fig. 4. Western North Atlantic mesh.

Table 1
LTS parameter s for three different test cases.

Test
case

�N M Dtmin

(sec)
Elements in each level

1 4 2 2 436, 4456, 13468, 80005
2 7 2 2 436, 4456, 13468, 19262, 21720, 26168,

12855
3 4 4 2 4892, 32730, 60743

C. Dawson et al. / Comput. Methods Appl. Mech. Engrg. 259 (2013) 154–165 159
are 2, 4, 8 and 16 s, respectively. In the third column we see how
many elements are initially in each timestepping group, based on
the criteria discussed in Section 3.1. Note that for Case 1, the vast
majority of elements take the largest timestep of 16 s. Therefore,
for Case 2, we chose �N ¼ 7 to allow elements to take even larger
timesteps. In this case, elements can take a timestep as large as
128 s. Case 3 differs in that we take M ¼ 4 and divide into 3 groups
with timesteps of 2, 16 and 64 s. This distributes more elements
among the latter two groups.

First, we examine whether LTS effects the accuracy of the solu-
tion. We compare the solution with no LTS to the LTS-Case 1 solu-
tion for a 10 day tidal simulatio n, to allow for the tide to fully
ramp-up and to compute several tidal cycles. In Fig. 5, we compare
the water elevation solution with no LTS with global timestep
Dt ¼ 2:195 s to the solution obtained with LTS-Case 1, at four mea-
surement stations along the eastern coast of the US In this figure
we are plotting the water elevation in meters vs. time in seconds
over the 10 day simulation at specific points in the domain. These
points are located near Boston, MA (71:05�W;42:36�NÞ, Charlesto n,
SC (79:93�W;32:78�N), Key West, FL (81:81�W;24:55�N), and Cor-
pus Christi, TX (97:22�W;27:58�NÞ. We note that the solutions are
virtually indistinguishab le, which indicates that LTS does not de-
grade the solution. We have examined solutions for other LTS
parameters and obtained very similar results.

Next we examine the parallel efficiency of the code with and
without LTS. In this problem, the local timesteps did not vary so
dramatically during the course of simulation to warrant a re-parti-
tioning of the mesh, therefore for the results presente d here, the
parallel partition is static. We will compare execution times for a
1 day simulation. All tests were performed on the Bevo2 1 cluster
at the Institute for Computationa l Enginee ring and Sciences at The
Universit y of Texas at Austin. First, to set a benchma rk, we test the
parallel efficiency of the code with no LTS. In Table 2 we see that
the code exhibits near perfect speed-up to 32 cores. Beyond that
the parallel performance begins to degrade. Therefore, in comparing
the various LTS strategies with no LTS, we will focus on runs with 8,
16 and 32 cores.
1 Bevo2 is a 23 node compute cluste r made up of Dell PowerEdge servers tha
house 2x quad core 2.66 GHz Intel Xeon processors for a total of 184 processors. Each
node has 16 gigabytes of RAM, dual gigab it ether net ports, and a single port Mellanox
III Lx Infiniband adapter attached to a QLogic SilverStorm Infiniband 24 port switch
capable of up to 20 Gb/s.
t

For the LTS method, to see an example of how the elements and
groups are split among processors, we show in Table 3 the distribu-
tion of elements among 8 processors (PEs) for LTS-Case 3. The
number of elements per PE includes ghost elements. We also com-
pute the total amount of ‘‘work’’ required on each PE to advance
the solution over one time cycle from tn to tnþ1. This is obtained
as follows for Case 3: the number of elements on level 1 requires
16 timesteps to complete one time cycle, level 2 requires 4
timesteps , and level 3 requires 1 timestep. Therefore, on PE0, for
example, the amount of work is

16 � 701þ 4 � 5983þ 983 ¼ 36131

as seen in column 3 of the table. For the work to be distrib uted
evenly among PEs this number should be roughly consta nt. We
see in Table 3 that the work is fairly evenly distrib uted among the
processo rs, with the maxim um variation on the order of 10%. We
also remark that during simulati ons the elemen t timesteps are
recomput ed every 1000 timesteps, based on the formula given in
Section 3.1. This allows elemen ts to change timestepping levels
during the simulation, and could effect the load balanci ng. How-
ever, for the three LTS cases consider ed, very few elemen ts changed
timestep ping levels during the course of the simulati ons, thus the
workloa d per PE remained essentia lly constant.

The parallel performanc e for the three LTS test cases is given in
Table 4. We first note that the parallel scaling is not as good as
without LTS, even though the run times are substantially reduced
for every case in comparison to the results given in Table 2. The
parallel efficiency for LTS drops off substanti ally between 16 and
32 PEs while no LTS still showed near optimal efficiency. The par-
allel scaling of LTS is limited by several factors. The number of ele-
ments on each level is not evenly distribut ed among PEs, due to
locality constraints within METIS. Furthermore, even if the number
of elements were evenly distribut ed, the computational efficiency
is limited by the surface-t o-volume ratio on each level on each
PE. With LTS the surface-to-v olume ratios could be worse on each
timestepp ing level than without LTS, meaning there is less compu-
tation and more message passing at each level. We remark how-
ever, that even with these limitations LTS on 32 cores (in the
best case) was a factor of 1.5 faster in compute time than no LTS
on 64 cores, with no appreciable difference observed in the
solutions.

3.3. Hurricane Ike storm surge forecast

One of the most challengi ng applications for coastal models is
the simulation of storm surge due to hurricanes. In previous work,
we have described the application of the DG method, with exten-
sions to include wetting and drying and internal barriers such as
levees, to the modeling of storm surge in the Gulf of Mexico [19].
In this section, we describe the application of LTS to a typical storm
surge event. In particular, we consider Hurricane Ike, which struck
the upper Texas coast in 2008.

The track of Ike is seen in Fig. 6. The storm progressed through
the Western North Atlantic, through the Caribbean Sea making
landfall in Cuba, and moved across the Gulf of Mexico, finally
making a second landfall at Galveston, TX in the early morning of

Fig. 5. Time history of water elevation comparing no LTS and LTS-Case 1. Units on the horizontal axis are seconds, and the vertical axis is in meters.

Table 2
Parallel performance and CPU times with no LTS for 1 day of simulation.

Cores CPU time (min:s) Speedup

8 86:42 –
16 44:31 1.95
32 24:31 1.82
64 17:38 1.39

Table 3
Number of elements per PE on each timestepping level for 8 processors and the total
work, computed as the total number of element-timesteps needed to advance the
solution from time tn to tnþ1.

PE # Elements in each level Total work

0 701 5983 983 36131
1 144 6124 9926 36726
2 288 3872 15652 35748
3 468 4773 8457 35037
4 617 5038 8943 38967
5 1725 1497 3589 37177
6 726 4404 8289 37521
7 1555 2865 2647 38987

Table 4
Parallel performance with LTS for 1 day of simulation.

LTS test case Number of PEs CPU time (min:s) Speedup

1 8 30:43
1 16 17:30 1.76
1 32 12:10 1.44

2 8 26:26 –
2 16 15:34 1.70
2 32 11:38 1.34

3 8 32:34 –
3 16 19:25 1.68
3 32 13:52 1.40

160 C. Dawson et al. / Comput. Methods Appl. Mech. Engrg. 259 (2013) 154–165
September 13, 2008. By this time, Ike had high category 2 winds
but had an unusuall y large wind field and produced a category 4
storm surge in an area east of Houston, TX. In [19], we compare d
results computed using the RKDG method with no LTS to data
taken from another model, namely the Advanced Circulation or
ADCIRC code, which was used to study Hurrican e Ike in [33]. In this
section, we study a slightly different scenario, namely a ‘‘forecast’’
of Ike using approximat e wind fields generated from data obtained
from the National Hurricane Center, and the Holland hurricane
wind/pres sure model developed in [34]. In this wind model, the
data given in the National Hurricane Center forecasts, namely the
location of the eye of the storm, the central pressure, the radius-
to-maxim um winds, and the maximum sustained wind speed,
are used to compute a vortex-shaped approximat ion of the
hurricane wind and pressure field. This model is used in forecast
simulatio ns of hurricane storm surges as described in [35], for
estimating surge as hurricane s approach land. Here we use the
so-called ‘‘best’’ track data; i.e, the actual hurricane track as
measure d through the progression of the storm, as opposed to
forecast tracks given during the event. The purpose of this exercise
is to investigate the performanc e of the parallel DG code with LTS
in this complex scenario, and compare to results generated using
the no LTS, RKDG method described in [19].

The domain used in these simulations is similar to the domain
used in the previous section, but with large sections of the Texas
coast included; see Fig. 7. Here we include most sections of the
coast which are less than 50 feet above sea level, since these

Fig. 6. Track of Hurricane Ike, taken from http://www.wunderground.com.

Fig. 7. Western North Atlantic/Texas domain with bathymetry (m).
Fig. 8. Galveston Bay with bathymetry (m).

C. Dawson et al. / Comput. Methods Appl. Mech. Engrg. 259 (2013) 154–165 161
regions could be affected in a storm event. The contours in the fig-
ure represent bathymetry measured in meters. In Fig. 8, we zoom
in on the Galveston Bay region, the narrow channel in the figure
is the Houston Ship Channel, which connects the Port of Houston
to the Gulf of Mexico. The land regions shown in the figure are also
included in the computational domain.

We present results of simulatio ns of a 5 day period during the
storm, beginning at 12:00 p.m. on September 9, 2008 and progress-
ing through 12:00 p.m. on September 14, 2008. The finite element
mesh for these simulations consisted of 2,628,757 elements and
1,344,247 nodes, with most elements located in the Louisiana–
Texas inland regions and continental shelf. The mesh is highly
graded, with element areas on the order of several square kilome-
ters in the deeper oceanic basins, transitioning to element areas on
the order of 2000 square meters in the coastal regions of Texas and
Louisiana . For simulatio ns with no LTS, a global timestep of.5 s was
used throughout the simulation. This was close to the minimum
timestep computed using the CFL criteria (14) with velocity of zero.

Table 5
LTS parameters for scenarios 1 and 2 for Hurricane Ike.

LTS scenario �N �M Dt’s

1 2 2 .5, 1.0
2 4 2 .5, 1.0, 2.0, 4.0

Fig. 10. Measurement locations X, Y and Z.

Fig. 9. Comparison of maximum water surface elevation in meters for Hurricane Ike
forecast. No LTS (top), LTS (middle) Scenario 1 and the difference (bottom).

2 The Ranger system is comprised of 3936 16-way SMP compute nodes providing
5,744 AMD Opteron processors for a total of 62,976 compute cores, 123 TB of total
emory and 1.7 PB of raw global disk space. It has a theoretical peak performance of

79 TFLOPS. All Ranger nodes are interconnected using InfiniBand technology in a
full-CLOS topology providing a 1 GB/s point-to-point bandwidth.

162 C. Dawson et al. / Comput. Methods Appl. Mech. Engrg. 259 (2013) 154–165
We considered several LTS scenarios and present the results for
two such scenarios. The parameters used in these scenarios are
summarized in Table 5.

Scenario 1: Upon an initial check of the local CFL constraints on
each element, we determined that only a small fraction of ele-
ments required the minimum CFL timestep. The vast majority of
elements had a local CFL timestep of 1 s or greater. Therefore,
LTS scenario 1 is a simple LTS simulation with two timesteppin g
levels (�N ¼ 2) and with �M ¼ 2. We ran the simulation on the Ran-
ger parallel computer at the Texas Advanced Computing Center 2

with 800 processing cores. In this case, there were 65,727 element s
in timesteppi ng level 1 and 2,708,551 elements in timesteppi ng level
2. These totals include elements in the overlap region between sub-
domains , therefore some elements are counted more than once. The
element s remained fixed within their timestep ping level throughou t
the 5 day simulation.

To compare the results of the LTS approach described above
with no LTS, we look at two types of results, contours of maximum
water elevation and hydrographs. The maximum water surface
elevation is computed as

gmaxðx; yÞ ¼ max
06t6T

gðx; y; tÞ:

This quantity is of interest since it indicate s where storm surge had
the most impact over the course of the simulation . In Fig. 9, we
compare the two solution s (LTS vs. no LTS) over the impact area
(the upper Texas coast extendin g to southeas tern Louisiana). We
also compute d the difference between the two solutions. Overall
the agreement betwee n the two solution s is quite close. There are
a few small differences in the solution s in some isolated elemen ts,
prima rily in regions which experience wetting and drying. These
differe nces are most likely due to sensitivit ies in the wettin g and
drying algorithm used in the code.

We also compare hydrographs of solutions at three locations
along the upper Texas coast, where actual instruments were de-
ployed just before the storm, as described in [33]. These measure -
ment locations are labeled as X, Y and Z in Fig. 10 and are in the
region of maximum storm surge. The LTS and no LTS solutions
are plotted together in Fig. 11, where we observe that the solutions
are virtually identical.

Scenario 2: Upon further examination of the local CFL time-
steps, we found that most elements are able to take an even larger
timestep than 1 s, at least based on an initial estimate. Therefore, in
the second scenario we divided the domain into 4 timestepp ing
levels with �M ¼ 2, with timesteps ranging from .50 to 4.00 s by fac-
tors of 2. The number of elements in each group at time t ¼ 0 is gi-
1
m
5

Fig. 11. Comparison of hydrographs for Hurricane Ike at measurement locations X, Y and Z.

Table 6
LTS scenario 1 data for Hurricane Ike simulation.

Timestep level Dt # Elements per level (t ¼ 0)

1 .5 56795
2 1.0 60158
3 2.00 521461
4 4.0 2043731

Fig. 12. Number of elements in each timestepping level vs. time for Hurricane Ike
simulation.

C. Dawson et al. / Comput. Methods Appl. Mech. Engrg. 259 (2013) 154–165 163
ven in Table 6. Note that the vast majority of elements can take a
4 s timestep. In this case, we recomputed the local timestep by
checking the CFL condition at periodic intervals throughout the
computati on. We chose to check and recompu te local timesteps
roughly every .1 days during the simulation. Thus, during the
course of the hurricane , the elements can shift between timestep
groups. In Fig. 12 , we illustrate this further, where we show specif-
ically how the number of elements within each timesteppin g level
varies with time. We note that Hurricane Ike made landfall be-
tween 3.5 and 4.5 days of simulatio n, and this is the time frame
during which most elements are shifted among timestepp ing
groups.

The results produced by the LTS solution were nearly identical
to those produced in LTS scenario 1 described above. In Fig. 13 ,
we show the maximum elevation solution over the impact area,
and the differenc e between the LTS and no LTS solutions for this
case. Overall the agreement between the two solutions is quite
close. As noted above, there are a few small differences in the solu-
tions in isolated elements , primarily in regions which experience
wetting and drying.

We remark that the water elevation hydrographs at Stations X,
Y and Z are virtually identical to those observed in Fig. 11 and we
do not reproduce them. In summary, the LTS method described
herein captures the maximum surge compara ble to the RKDG
method with no LTS. We also remark that any attempts to run
the simulation with no LTS and a timestep larger than the global
CFL timestep of .527 s blew up early in the simulation. Therefore,
experime ntally at least this was a tight bound on the maximum
allowabl e timestep for the standard RKDG method.

Finally, we discuss the parallel performanc e of the model with
and without LTS. Using 800 cores on Ranger; i.e., dividing the do-
main into 800 subdomains, and using a global timestep of .5 s,
the total compute time for the no LTS case was 930 min. The same
run using LTS scenario 1 took 586 min for a 37% reduction in wall
clock time. LTS scenario 2 took 432 min for a 53% reduction in wall
clock time. We also performed simulations of the no LTS case and
LTS scenario 2 on 1600 cores. The run times were 555 min and
240 min, respectively . Thus, no LTS exhibited a parallel speedup

Fig. 13. Maximum water surface elevation in meters for Hurricane Ike forecast. LTS
scenario 2 and the difference between LTS and no LTS solutions.

164 C. Dawson et al. / Comput. Methods Appl. Mech. Engrg. 259 (2013) 154–165
factor of 1.67 and LTS scenario 2 a factor of 1.8 for this particular
test case.

4. Conclusion

In this paper, we have investiga ted the LTS approach described
in [8] for some large-scale applicati ons in shallow water flows.
These applicati ons require the use of parallel computing, therefore
we extended the serial LTS method described in [8] to utilize par-
allel, distributed memory computing platforms. We have exam-
ined the accuracy and efficiency of the method for standard tidal
flow and for modeling hurricane storm surges. The method has
proven to be robust even in extreme, wind-driven events.

The parallel performance of the LTS method for different
choices of �N and �M is difficult to predict a priori . Since the element
sizes in the meshes that we are given and the initial water depths
both vary significantly over the domain, the local CFL constraints
also vary significantly over the domain. Thus, it is difficult to deter-
mine in advance the �N and �M which would optimize the parallel
performanc e. Our approach has been to test various values of �N
and �M over fairly short time intervals, on the order of .1 days,
before performing a full multi-day simulation.

Future work will focus on exploring further parallel efficiency of
the method for shallow water flows and other applications where
there are distinct separations in spatial discretizatio n and temporal
scales.

Acknowledgmen ts

Author C. Dawson acknowledges the support of National Sci-
ence Foundation Grants DMS-1217071 and DMS-0915223 . J. West-
erink acknowledges the support of National Science Foundation
Grant OCI-0746232, and E. Kubatko acknowledges National
Science Foundation Grants DMS-0915118 and DMS-12172 18.
References

[1] S. Osher, R. Sanders, Numerical approximations to nonlinear conservation laws
with locally varying time and space grids, Math. Comput. 41 (164) (1983) 321–
336.

[2] C. Dawson, High resolution upwind-mixed finite element methods for
advection–diffusion equations with variable time-stepping, Numer. Methods
Partial Differ. Equ. 11 (5) (1995) 525–538.

[3] C. Dawson, R. Kirby, High resolution schemes for conservation laws with
locally varying time steps, SIAM J. Sci. Comput. 22 (6) (2000) 2256–2281,
http://dx.doi.org/10.1137/S1064827500367737.

[4] R. Kirby, On the convergence of high resolution methods with multiple time
scales for hyperbolic conservation laws, Math. Comput. 72 (243) (2002) 1239–
1250.

[5] B.F. Sanders, Integration of a shallow water model with a local time-step, J.
Hydraul. Res. 46 (4) (2008) 466–475.

[6] E.M. Constantinescu, A. Sandu, Multirate timestepping methods for hyperbolic
conservation laws, J. Sci. Comput. 33 (2007) 239–278.

[7] A. Sandu, E. Constantinescu, Multirate explicit Adams methods for time
integration of conservation laws, J. Sci. Comput. 38 (2009) 229–249.

[8] C.J. Trahan, C. Dawson, Local time-stepping in Runge–Kutta discontinuous
Galerkin finite element methods applied to the shallow water equations,
Comput. Methods Appl. Mech. Engrg. 217–220 (2012) 139–152.

[9] E. Constantinescu, A. Sandu, Extrapolated multirate methods for differential
equations with multiple time scales, J. Sci. Comput., http://dx.doi.org/10.1007/
s10915-012-9662-z.

[10] L. Liu, X. Li, F. Hu, Nonuniform time-step Runge–Kutta discontinuous Galerkin
method for computational aeroacoustics, J. Comput. Phys. 229 (19) (2010)
6874–6897.

[11] E. Montseny, S. Pernet, X. Ferriéres, G. Cohen, Dissipative terms and local time-
stepping improvements in a spatial high order discontinuous Galerkin scheme
for the time domain Maxwell’s equations, J. Comput. Phys. 227 (14) (2008)
6795–6820.

[12] J. Remacle, J. Flaherty, M. Shephard, An adaptive discontinuous Galerkin
technique with an orthogonal basis applied to compressible flow, SIAM Rev. 45
(1) (2003).

[13] J. Diaz, M. Grote, Energy conserving explicit local time stepping for second-
order wave equations, SIAM J. Sci. Comput. 31 (3) (2009) 1945–2014.

[14] N. Godel, S. Schomann, T. Warburton, M. Clemens, GPU accelerated Adams–
Bashforth multirate discontinuous Galerkin FEM simulation of high-frequency
electromagnetic fields, IEEE Trans. Magn. 46 (8) (2010) 2735–2738.

[15] M. Berger, D.L. George, R.J. LeVeque, K.T. Mandli, The GeoClaw software for
depth-averaged flows with adaptive refinement, Adv. Water Resour. 34 (2011)
1195–1206.

[16] M. Berger, R.J. LeVeque, Adaptive mesh refinement using wave-propagation
algorithms for hyperbolic systems, SIAM J. Numer. Anal. 35 (1998) 2298–2316.

[17] E.J. Kubatko, J.J. Westerink, C. Dawson, hp discontinuous Galerkin methods for
advection dominated problems in shallow water flow, Comput. Methods Appl.
Mech. Engrg. 196 (1–3) (2006) 437–451.

[18] E.J. Kubatko, S. Bunya, C. Dawson, J.J. Westerink, A performance comparison of
continuous and discontinuous finite element shallow water models, J. Sci.
Comput. 40 (2009) 315–339.

[19] C. Dawson, E. Kubatko, J. Westerink, C. Trahan, C. Mirabito, C. Michoski, N.
Panda, Discontinuous Galerkin methods for modeling hurricane storm surge,
Adv. Water Resour., http://dx.doi.org/10.1016/j.advwatres.201 0.11.004 .

[20] E. Kubatko, S. Bunya, C. Dawson, J. Westerink, Dynamic p-adaptive Runge–
Kutta discontinuous Galerkin methods for the shallow water equations,
Comput. Methods Appl. Mech. Engrg. 198 (2009) 1766–1774.

[21] S. Bunya, E. Kubatko, J. Westerink, C. Dawson, A wetting and drying treatment
for the Runge–Kutta discontinuous Galerkin solution to the shallow water
equations, Comput. Methods Appl. Mech. Engrg. 198 (17–20) (2009) 1548–
1562, http://dx.doi.org/10.1016/j.cma.2009.01.008.

[22] D. Wirasaet, S. Tanaka, E.J. Kubatko, J.J. Westerink, C. Dawson, A performance
comparison of nodal discontinuous Galerkin methods on triangles and
quadrilaterals, Int. J. Numer. Methods Fluids 64 (2010) 1336–1362.

[23] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory
shock-capturing schemes: II, J. Comput. Phys. 83 (1) (1989) 32–78, http://
dx.doi.org/10.1016/0021-999(89)90222-2.

[24] C.-W. Shu, TVB uniformly high-order schemes for conservation laws, Math.
Comput. 49 (179) (1987) 105–121.

[25] C. Michoski, C. Mirabito, C. Dawson, D. Wirasaet, E.J. Kubatko, J.J. Westerink,
Adaptive hierarchie transformations over dynamic p-enriched schemes
applied to generalized DG systems, J. Comput. Phys. 230 (2011) 8028–8056.

[26] J.B. Bell, C.N. Dawson, G.R. Shubin, An unsplit, higher-order Godunov method
for scalar conservation laws, J. Comput. Phys. 74 (1988) 1–24.

[27] G. Karypis, V. Kumar, METIS: a software package for partitioning unstructured
graphs, partitioning meshes, and computing fill-reducing orderings of sparse
matrices, University of Minnesota, Department of Computer Science/Army
HPC Research Center, Minneapolis, MN, 1998.

[28] G. Karypis, V. Kumar, A fast and high quality scheme for partitioning irregular
graphs, SIAM J. Sci. Comput. 20 (1999) 359–392.

http://refhub.elsevier.com/S0045-7825(13)00066-2/h0005
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0005
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0005
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0010
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0010
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0010
http://dx.doi.org/10.1137/S1064827500367737
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0020
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0020
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0020
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0025
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0025
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0030
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0030
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0035
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0035
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0040
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0040
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0040
http://dx.doi.org/10.1007/s10915-012-9662-z
http://dx.doi.org/10.1007/s10915-012-9662-z
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0045
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0045
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0045
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0050
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0050
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0050
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0050
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0055
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0055
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0055
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0060
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0060
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0065
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0065
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0065
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0070
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0070
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0070
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0075
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0075
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0080
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0080
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0080
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0085
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0085
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0085
http://dx.doi.org/10.1016/j.advwatres.2010.11.004
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0090
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0090
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0090
http://dx.doi.org/10.1016/j.cma.2009.01.008
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0100
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0100
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0100
http://dx.doi.org/10.1016/0021-999(89)90222-2
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0110
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0110
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0115
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0115
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0115
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0120
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0120
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0125
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0125

C. Dawson et al. / Comput. Methods Appl. Mech. Engrg. 259 (2013) 154–165 165
[29] J. Westerink, R. Luettich, J. Feyen, J. Atkinson, C. Dawson, H. Roberts, M. Powell,
J. Dunion, E. Kubatko, H. Pourtaheri, A basin to channel scale unstructured grid
hurricane storm surge model applied to Sourthern Louisiana, Am. Meteorol.
Soc. 136 (3) (2008) 833–864.

[30] J. Garratt, Review of drag coefficients over oceans and continents, Mon.
Weather Rev. 105 (1977) 915–929.

[31] C.L. Provost, P. Vincent, Finite Elements for Modeling Ocean Tides , John Wiley
and Sons, New York, 1991 .

[32] A. Mukai, J. Westerink, R. Luettich, D. Mark, Eastcoast 2001, a tidal constituent
database for Western North Atlantic, Gulf of Mexico, and Caribbean Sea, TR
ERDC01-x, US Army Engineer Research and Development Center, Vicksburg,
MS, 2002.

[33] A. Kennedy, U. Gravois, B. Zachry, J. Westerink, M. Hope, J. Dietrich, M. Powell,
A. Cox, J.R.A. Luettich, R. Dean, Origin of the hurricane Ike forerunner surge,
Geophys. Res. Lett. 38 (2011).

[34] G. Holland, An analytic model of the wind and pressure profiles in hurricanes,
Mon. Weather Rev. 108 (1980) 1212–1218.

[35] J. Fleming, C. Fulcher, R. Luettich, B. Estrade, G. Alolen, H. Winer, A real time
storm surge forecasting system using ADCIRC, in: M. Spaulding (Ed.), Estuarine
and Coastal Modeling X, ASCE, pp. 893–912.

http://refhub.elsevier.com/S0045-7825(13)00066-2/h0130
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0130
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0130
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0130
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0135
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0135
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0140
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0140
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0140
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0145
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0145
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0145
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0150
http://refhub.elsevier.com/S0045-7825(13)00066-2/h0150

	A parallel local timestepping Runge–Kutta discontinuous Galerkin method with applications to coastal ocean modeling
	1 Introduction
	2 Numerical methods
	2.1 The discontinuous Galerkin finite element method
	2.2 Runge–Kutta time discretization
	2.3 Slope limiting and wetting and drying
	2.4 Local timestepping (LTS)
	2.5 Implementation and parallelization

	3 Applications to the SWE
	3.1 LTS in the SWE
	3.2 Tidal flows in the Western North Atlantic Ocean
	3.3 Hurricane Ike storm surge forecast

	4 Conclusion
	Acknowledgments
	References

