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Geophysic al flows over comp lex domains often encompass both coarse and highly resolved regions.
Approxim ating these flows using shock-capturing methods with explicit timestep ping gives rise to a Cou- 
rant–Friedrichs–Lewy (CFL) timestep constraint. This approach can result in small global timesteps often 
dictated by flows in small regions, vastly increasing computational effort over the whole domain. One 
approach for coping with this problem is to use locally varying timesteps. In previous work, we formu- 
lated a local timestep ping (LTS) method within a Runge–Kutta discontinuous Galerkin framework and 
demonstrated the accuracy and efficiency of this method on serial machines for relatively small-scale 
shallo w water applications. For more realistic models involving large domains and highly complex phys- 
ics, the LTS method must be parallelized for multi-core parallel computers. Furthermore, add itional phys- 
ics such as strong wind forcing can effect the choice of local timesteps. In this paper, we describe a
parallel LTS method, parallelized using domain decomposition and MPI. We demonstrate the method 
on tidal flows and hurricane storm surge applications in the coastal regions of the Western North Atlantic 
Ocean.

� 2013 Elsevier B.V. All rights reserved.
1. Introductio n

It is well-known that for explicit time discretizatio ns of conser- 
vation laws, the timestep must satisfy a CFL condition for numeri- 
cal stability. From a global perspective, the timestep calculated 
from the CFL constraint is governed by the size of the smallest ele- 
ment and the eigenvalues of the system. In many situations, for 
example when the grid is unstructured or the physics is highly 
localized, the element sizes and eigenvalues may vary significantly
over the domain, resulting in inefficiencies in regions where the lo- 
cal CFL timestep could be much larger than the global CFL 
timestep.

One way to deal with this problems is to use local timesteppin g
(LTS), where the step size varies on each element and is depende nt 
on a local CFL condition. Such methods have been previously de- 
rived and applied to general conservation laws by a number of 
authors [1–7] and to a variety of applicati ons; see for example 
[8–14]. This procedure is also similar to multirate methods and 
adaptive mesh refinement (AMR) methods . The AMR method used 
in the GeoClaw software [15,16] uses forward Euler timestepp ing 
with timesteps dictated by local CFL constraints on each refine-
ment patch. The fluxes at the interfaces between levels are con- 
served in the same way described here, and as described in [1].
The multirate methods described in [6] for conservation laws are 
shown to preserve second order accuracy and the TVD property .

In previous work [8], we developed and applied an LTS method 
within the framework of a second order Runge–Kutta discontinu- 
ous Galerkin (RKDG) method, and applied the method to the solu- 
tion of the shallow water equations. The accuracy and stability of 
the method was examine d and comparisons with RKDG solutions 
with no LTS were given for some relatively small-scal e model prob- 
lems, with all test cases executed on serial computers. The shallow 
water equations (SWE) are a set of hyperbolic partial differential 
equation s (under the assumption of inviscid flow) which describe 
the circulation of an incompressible fluid where the water depth 
is much smaller than the horizontal waveleng th. The SWE are used 
to study tides, storm surges and dam breaks, among other applica- 
tions. In these problems, complex geometri es such as irregular 
shorelines , channels, inlets, and regions with highly varying 
bathymetr y, must be resolved to accurately capture the flow.
Therefore, shock-ca pturing methods based on unstructured finite
element discretiza tions, such as the discontinuo us Galerkin 
(DG) method, are often applied to the SWE. DG methods are 
capable of incorporating special numerical fluxes and stability 
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post-proces sing into the solution to model highly advective flows
without excessive oscillations. Additionally, DG methods are 
highly parallel and allow for locally varying polynomial orders.
Extensive previous work describin g the developmen t and applica- 
tion of DG methods to shallow water systems by the authors and 
collaborator s can be found in [17–22].

In this paper, we study the LTS method described in [8] for some 
large-scale coastal flow applicati ons. These applications require 
large domains, highly unstructured meshes with hundreds of thou- 
sands to millions of elements, and can involve simulation of com- 
plex phenomena over several days. Thus, efficient simulation 
requires the use of parallel computing. The extension of LTS meth- 
odologies to distributed memory parallel computers is nontrivial,
and we describe one approach which has proven effective for 
two SWE applicati ons with complex physics, namely modeling ti- 
dal flows in the Western North Atlantic ocean, and modeling coast- 
al inundation due to hurricane storm surge in the Gulf of Mexico.
This approach builds upon a fully parallel RKDG shallow water sol- 
ver develope d by the authors and several collaborators [18,19],
where the parallelization is achieved through domain decomposi- 
tion and MPI.

The rest of this paper is arranged as follows. In the next section,
we outline the RKDG method and discuss the impleme ntation of 
the LTS method in a parallel computing environm ent. In Section 3,
we discuss the shallow water model, and study the LTS method in 
the context of the two applicati ons mentioned above. In particular ,
we investiga te the overall efficiency of LTS in parallel vs. standard 
global timestepp ing, and how well LTS performs within a complex 
coastal modeling system.

2. Numerical methods 

2.1. The discontinuous Galerkin finite element method 

In this section we briefly outline the DG method. Consider the 
hyperbolic equation ,
@w
@t
þr � FðwÞ ¼ s: ð1Þ

To formulate the semi-disc rete DG method for (1), the physical do- 
main, X, is first partitio ned into non-overla pping finite elemen ts, Ki

for i ¼ 1;2; . . . ;N. If PkðKiÞ is defined as the space of polynom ials of 
degree 6 k over elemen t i, the DG metho d can be formula ted as 
seeking a piecewise smooth function whjKi

2 PkðKiÞ which 8i
satisfies:Z

Ki

@wh

@t
vh dx�

Z
Ki

FðwhÞ � rvh dxþ
Z
@Ki

bF � nivh ds ¼
Z

Ki

svh dx;

ð2Þ

where vhjKi
2 PkðKiÞ is the test function, and F̂ is an approxim ation 

to the normal flux at the elemen t boundaries . Here ni is the unit 
outward normal to @Ki.

Eq. (2) is obtained by multiplying the original equation by a test 
function, integrati ng over each element and integrating the diver- 
gence term by parts. The numerical flux is required since the dis- 
crete solutions allow for discontinuiti es between elements. For 
nonlinear equations, an approximate Riemann solver is used to de- 
fine the numerical flux along element boundari es. Given a face be- 
tween two elements , we label the elements on each side of this 
face K� and Kþ, and let n be the normal vector to the face which 
points from K� to Kþ, then 

F̂ � Fn

and F̂ depends on the solution on either side of the face, that is,

F̂ ¼ F̂ðwh;�;wh;þÞ;
where wh;� ¼ whjK� with similar definition for wh;þ. For elemen ts on 
the boundary, the normal n is assumed to be the outward normal to 
the boundary of the domain, and wh;þ is chosen to enforce external 
boundar y conditio ns; see [17]. Many different numerica l fluxes F̂
have been proposed in the literature. For the results presen ted 
below, the local Lax–Friedrichs flux is used.

The discrete solution and test functions are then expanded on 
element Ki with s degrees of freedom:

whjKi
¼
Xs

j¼1

~wj;iðtÞ/jðx; yÞ; vhjKi
¼
Xs

k¼1

~vk;iðtÞ/kðx; yÞ; ð3Þ

where f~w; ~vg are the basis function degrees of freedom, and f/kg
are the basis functions. Using (3) and (2), Eq. (1) can be written as 
system of ODEs 

M
d ~w
dt
¼ b; ð4Þ

where Mj;k ¼
R

Ki
/j/k dx is the mass matrix and 

~w ¼ ½ ~w1;1; ~w2;1; . . . ; ~ws;1; ~w1;2; . . . ; ~ws;N �T ; ð5Þ

b ¼ ½R1ð/1Þ;R1ð/2Þ; . . . ;R1ð/sÞ;R2ð/1Þ; . . . ;RNð/sÞ�
T
; ð6Þ

with,

Rjð/iÞ ¼
Z

Kj

ðFðwhÞ � r/i þ s/iÞ dx�
Z
@Kj

F̂ � nj/i ds: ð7Þ
2.2. Runge–Kutta time discretization 

For time integration, the system of equation s

d ~w
dt
¼ Lhð ~wÞ �M�1 b ð8Þ

is discretized in time using an explicit, strong stability preserv ing 
(SSP) Runge–Kutta scheme. These methods were originally referred 
to as total variation diminishi ng methods and were introduce d by 
Shu and Osher (see Refs. [23,24]). For linear basis functions in space,
general ly a second order SSP Runge–Kutta scheme is used. Given a
timestep Dt, and tn ¼ nDt; n ¼ 0;1; . . ., the method is defined as 

~w0 ¼ ~wðtnÞ;
~wi ¼ ~wi�1 þ DtLhð ~wi�1Þ; for i ¼ 1;2;

~wðtnþ1Þ ¼ 1
2
ð ~w0 þ ~w2Þ:

ð9Þ

Thus, the method consists of taking two forward Euler steps, and 
averag ing the final result with the solution at the previous timestep .
This method is also known as Heun’s method.

2.3. Slope limiting and wetting and drying 

Other aspects of the DG implementation, such as slope limiting 
and wetting and drying, which are more specific to the shallow 
water applicati on, are described in [8] and the references therein.
Therefore we will not repeat them here except to say that in the 
numerica l results below, we use a vertex-based slope limiter 
(the Bell–Dawson–Shubin limiter) as described in [25,26], and 
the wetting and drying algorithm described in [21] is used.
2.4. Local timestepp ing (LTS)

While the RKDG method described above allows for any 
polynomi al order approximat ing space and higher order time- 
stepping, we will restrict our attention in the remainder of this 
paper to piecewise linear approximat ions and second-order SSP 
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Runge–Kutta timestepping. The LTS method that we employ is 
described in [8], however we review it again here for complete -
ness. It is based on a simple modification of the second order SSP 
Runge–Kutta method described above, to allow for different 
timesteps in different regions, and to conserve mass.

We also remark that the LTS scheme discussed here follows in 
spirit the method originally described and analyzed in [3] for the 
one-dimensi onal conservation law ut þ f ðuÞx ¼ 0. In that work, a
local timestepp ing method was derived from an RKDG scheme,
with piecewise linear approximat ions in space and Heun’s method 
in time. It allowed for interfaces separating elements with time- 
steps differing by a factor M, with local CFL constraints imposed 
on each element. The method was shown to satisfy a strict maxi- 
mum principle, and is hence stable, with a suitable slope-limiter 
applied to the linear component of the numerica l solution. While 
the stability proof does not extend to the shallow water equations 
defined over very general domains and discretized on highly 
unstructured triangular meshes, the analysis in [3] does suggest 
that the approach described here could have similar stability prop- 
erties. Our numerical tests to date suggest that this is in fact the 
case.

To describe the LTS scheme, we consider decomposing an 
example domain, X into two zones, X1 and X2, see Fig. 1. These 
zones are separated by a one-dimensi onal interface r, indicated 
by the dashed line. Each zone consists of some number of ele- 
ments. In Fig. 1 X2 has four rectangu lar elements, and X1 has eight 
rectangular elements which are half the size of the elements in X2,
which would lead to a more severe CFL timestep constrain t in X1

than in X2. Each zone is assumed to have its own timestep,
fDT1;DT2g, assigned so that (1) each satisfy its subdomain CFL 
constraint and (2) DT2 ¼ MDT1, for some positive integer M.

Assume the solution is given over the whole domain at time tn.
In order to propagate the solution to time tnþ1 ¼ tn þ DT2, M sub-
timesteps within X1 are taken. To evaluate numerica l fluxes at 
the interface r, the X2 states are fixed at time tn. Subsequently,
X2 is updated to tnþ1 by taking one timestep. To calculate the fluxes
at r as seen from X2, an average over the M X1 fluxes is used.

More precisely, suppose K1 and K2 are two neighbori ng ele- 
ments whose common boundary @K1 \ @K2 intersects the local 
timesteppin g interface r. Assume K1 is in the subdomain X1 and
K2 is in X2. Suppose that the normal on @K1 \ @K2 points from K1

to K2; i.e., K1 is K� and K2 ¼ Kþ in the notation above. Let 
w0

h ¼ whðtnÞ and w0;l
h ¼ whðtn þ lDT1Þ, for l ¼ 0; . . . ;M.

Then combinin g (9) and (2), the RKDG method on K1 at time 
tn;l � tn þ lDT1 is defined by 
Fig. 1. Division of X into two zones with different timesteps.
Z
K1

wi;l
h vh dx ¼

Z
K1

wi�1;l
h vh dxþ DT1

Z
K1

Fðwi�1;l
h Þ � rvh dx

� DT1

Z
@K1=r

bFðwi�1;l
h;� ;w

i�1;l
h;þ Þ � n1vh ds� DT1

�
Z
@K1\@K2

bFðwi�1;l
h;� ;w

0
h;þÞ � n1vh dsþ DT1

�
Z

K1

svh dx ð10Þ

for i ¼ 1;2. Here we have split the boundary @K1 into the part which 
does not intersec t r, i.e., @K1=r, and the part which does intersec t r,
i.e., @K1 \ @K2. We are assuming that on @K1=r no local timestep -
ping is occurring . At each interme diate timestep tn;lþ1 we set 

w0;lþ1
h ¼ 1

2
ðw0;l

h þw2;l
h Þ ð11Þ

for l ¼ 0; . . . ;M � 1. Then on K2, the RKDG method is defined by Z
K2

wi
h vh dx ¼

Z
K2

wi�1
h vh dxþ DT2

Z
K2

Fðwi�1
h Þ � rvh dx

� DT2

Z
@K2=r

bFðwi�1
h;�;w

i�1
h;þÞ � n2vh ds�

XM�1

l¼0

DT1

�
Z
@K1\@K2

bFðwi�1;l
h;� ;w

0
h;þÞ � n2vh dsþ DT2

�
Z

K2

svh dx ð12Þ

for i ¼ 1;2. Finally on K2

whðtnþ1Þ ¼ 1
2
ðw0

h þw2
hÞ: ð13Þ

Combining (10)–(13), setting vh ¼ 1 on K1 and K2, and noting that 
n1 ¼ �n2 on @K1 \ @K2,Z

K1[K2

whðtnþ1Þdx ¼
Z

K1[K2

½whðtnÞ þ S�dx

where S is an approxim ation to the time integral of the source/sink 
terms in the model over the time interval ½tn; tnþ1�. Thus, in this 
sense, mass and momentum are conserve d in the region of the 
LTS interface.
2.5. Implementa tion and parallelization 

The LTS method described above allows for a fairly general 
timestepp ing approach with one assumption, that neighbori ng ele- 
ments are assumed to have timesteps which differ by some integer 
M. In order for the coding of the LTS method not to be overly cum- 
bersome , we assume that each element K in the discretiza tion of X
is placed into a timesteppin g group or level. Level 1 will denote the 
elements with the smallest timestep, level 2 the next smallest, and 
so forth. We will denote the total number of levels by N. For sim- 
plicity we will also assume that M is constant from one level to 
the next.

Elements are sorted into levels by first calculating a local CFL 
timestep. On each element K, we compute a local timestep 

DtK ¼ a
�hK

kK
ð14Þ

where a is a CFL paramete r which is Oð1Þ, typically a ¼ 1=
ffiffiffi
2
p

; �hK is
the minimum distance between the centroid of the element and the 
midpoint of the edges of K, and kK is an estima te of the maximum 
eigenv alue of the Jacobian associated with the normal flux F̂. Let 
DTl; l ¼ 1; . . . ; �N denote timesteps associated with each timestep -
ping level, where MDTl ¼ DTlþ1. We assume that 
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DT1 6min
K

DtK :

Then element K is placed into timestep group l if

DTl 6 DtK < DTlþ1: ð15Þ

If DtK P DT �N then element K is placed into level �N. The element 
timestep s are then reset, thus if element K is in group l, then 
DtK  DTl.

In [8], this approach was investigated for several shallow water 
applications and observed to preserve second order accuracy for a
problem with an analytical solution, and it was shown to give solu- 
tions comparable to those computed using a global CFL timestep 
(i.e., �N ¼ 1). Furthermore, on serial machines, the method was 
shown to be nearly optimal in terms of computational efficiency.

For large-scale applications of interest, solutions cannot be 
computed in serial due to memory and CPU limitations, therefore 
parallel computing is necessary. We have investiga ted the imple- 
mentation of the LTS method in parallel, again implementing the 
LTS method in a DG shallow water model. The parallel perfor- 
mance of this model without LTS has been investigated in other pa- 
pers, most notably in [18]. The parallelization approach is based on 
domain decompositi on, where the domain is first decomposed 
using the METIS software library [27,28]. METIS divides the do- 
main into overlappi ng subdomains with ‘‘ghost’’ regions based on 
a graph-par tition of the nodes that make up the finite element 
mesh. In our implementati on, the ghost region consists of elements 
which are shared by neighbori ng processors. MPI is used to pass 
solution informat ion defined on the ghost elements to the neigh- 
boring processor . METIS attempts to divide the domain to balance 
the work-load among processors, to preserve locality of the ele- 
ments and nodes within the subdomain and to minimize the ‘‘sur- 
face-to-volum e’’ ratio; that is, to keep the ratio of ghost nodes to 
resident nodes low in order to reduce the communications over- 
head. For improved load balancing, METIS allows the user to 
weight nodes in the finite element mesh using an estimate of the 
‘‘work’’ related to the node; for example, by estimating the maxi- 
mum amount of work performed in elements which are attached 
to the node.

For a fixed global timestep, the parallelization of the DG method 
is quite straightforwar d. Each element has a fixed amount of work,
takes the same timestep, and parallelizati on is achieved by each 
subdomain communicating with neighboring subdomains at the 
end of each Runge–Kutta timestep. The communicati on remains 
constant throughout the simulation. For LTS, the situation is much 
more complicated.

First, there is the question of load balancing. The amount of 
work per element depends on the local timestep. We have at- 
tempted to address this in METIS by weighting each node by a fac- 
tor which depends on the local timesteps associated with elements 
attached to the node. This factor is determined by the number of 
sub-cycling steps required for the element with the smallest time- 
step to go from time tn to time tnþ1. The local timestep may also 
change during the course of the simulation, therefore in reality 
the load should be dynamical ly re-balanced during the simulation.

Second, there are communication issues associated with LTS.
For example, consider a 1-D example as in Fig. 2. We picture four 
Fig. 2. Example of LTS in one space d
elements labeled i� 2; i� 1; i and iþ 1. There are �N ¼ 3 timestep- 
ping levels with M ¼ 2. Elements i� 2 and i� 1 are on level 1, with 
the smallest timestep, element i is on level 2 and iþ 1 on level 3.
Now assume elements i� 2; i� 1 and i are on processor 0 (PE0),
and i� 1; i and iþ 1 are on the neighboring processor 1 (PE1), with 
elements i� 1 and i in the ghost region. Both processor s PE0 and 
PE1 compute the solution on these two elements, but element 
i� 1 is ‘‘owned’’ by PE0 while element i is ‘‘owned’’ by PE1. For 
the solution to be computed correctly in the ghost region, informa- 
tion in element i� 1 must be passed from PE0 to PE1 at each level 1
timestep, and the informat ion in element i must be passed from 
PE1 to PE0 at all level 2 timesteps.

In general, each timesteppin g level must communicate informa- 
tion with neighboring processors which share elements on the 
same level, if these elements are within the ghost region. There- 
fore, we have implemented a message-pas sing construct which is 
level-dep endent. This may reduce parallel efficiency in the sense 
of strong scalability, since not all subdomains may have the same 
number of elements on each level, in fact some subdomains may 
have no elements on a given timestepping level. Or, subdomains 
may have elements within a level but none in the ghost region,
while other subdoma ins may have many elements within a certain 
level in the ghost region, and thus require message-p assing. One 
could try to address this problem by attempting to evenly divide 
the elements on each level among the processors, however, this ap- 
proach would most likely destroy locality, and result in a large 
number of isolated elements on each processor.

In summary , determining an optimal parallel strategy for LTS is 
complicated by several factors; however, as we will see in the re- 
sults section below, LTS can still lead to an efficient and accurate 
approach in parallel as it does in serial.

3. Applicati ons to the SWE 

The SWE are based on the three-dimens ional Reynold’s aver- 
aged Navier–Stokes equations for a Newtonian fluid. Averaging 
these equations over the vertical depth of the water H and applying 
kinematic and no-flow boundary condition s at the top and the bot- 
tom, gives rise to the conservati ve form of the SWE:

@H
@t
þ Sp

@ðuHÞ
@x

þ @ðvHÞ
@y

¼ 0; ð16Þ

@ðuHÞ
@t

þ Sp

@ u2H þ 1
2 gH2

� �
@x

þ @ðuvHÞ
@y

¼ gSpH
@g
@x
þ ðsn

x � sg
x Þ þ Fx; ð17Þ

@ðvHÞ
@t

þ
@ v2H þ 1

2 gH2
� �

@y
þ Sp

@ðuvHÞ
@x

¼ gH
@g
@y
þ ðsn

y � sg
yÞ þ Fy; ð18Þ

where u and v are depth -average veloci ties, n is the water elevation 
relative to the geoid, g ¼ H � n is the bathyme try relative to the 
imension with �N ¼ 3 and M = 2.



Fig. 3. Western North Atlantic Ocean domain. Tidal elevations are specified at the 
eastern boundary, all other boundaries are land boundaries. Contours represent 
bathymetry in meters relative to the National Geodetic Vertical Datum of 1988 
(NAVD88).
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geoid, g is gravitatio nal acceleration , fsn
x;y; s

g
x;yg are the surface 

(wind) and bed (bottom friction) stresses , respective ly, and Fx;y ac-
counts for other external forces,such as Coriolis force and tidal po- 
tential. The paramete r Sp is a spheric al correction factor which 
transform s the SWE in spheric al coordinat es /; k to Cartesian coor- 
dinates x; y using an orthogon al cylindric al projectio n; see [19]. To 
arrive at these equations , a number of assumptions have been 
made; (1) the vertical accelerat ion of a fluid particle is small in com- 
parison to the acceler ation of gravity, (2) shear stresses due to the 
vertical velocity are small and (3) the horizont al shear terms,
f@2u=@x2; @2u=@y2; @2v=@x2; @2v=@y2g are small compared to vertical 
shears, f@2u=@z2; @2v=@z2g.

For closure, the bed stress terms must be parameterized via the 
depth-avera ged velocities. The bed stress is often approximat ed by 
linear or quadratic functions of the velocities, however , we have 
used a hybrid form proposed by Westerin k et al. [29] which varies 
the bottom-fric tion coefficient with the water column depth:

sg
x ¼ uH Cf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

H

 !
; sg

y ¼ vH Cf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

H

 !
; ð19Þ

where,

Cf ¼ Cfmin 1þ Hbreak

H

� �fh
 !fc=fh

: ð20Þ

This formulation applies a depth-dep endent, Manning- type friction 
law below the break depth (Hbreak) and a standard Chezy friction law 
when the depth is greater than the break depth. For the application s
below, Cfmin is allowed to vary, since the bed surfaces change.

The wind surface stress is computed by a standard quadratic 
drag law. Define

ŝn
x

q0
¼ Cd

qair

q0
jWjWx; ð21Þ

ŝn
y

q0
¼ Cd

qair

q0
jWjWy: ð22Þ

Here W ¼ ðWx;WyÞ is the wind speed sampled at a 10-m height 
over a 15 min time period and qair is the air density. The drag coef- 
ficient is defined by Garratt’s drag formula [30]:

Cd ¼ ð:75þ :06jWjÞ � 10�3: ð23Þ

We also remark that the wind surface stress is capped so that its 
magnitud e is never greater than.002.

3.1. LTS in the SWE 

The eigenvalues of the normal flux for the SWE are 

k1;2 ¼ unx þ vny 	
ffiffiffiffiffiffi
gH

p
; k3 ¼ unx þ vny: ð24Þ

In shallow water simulation s, one typically initializes the simula- 
tion by assum ing a ‘‘cold-s tart;’’ i.e., water elevations are initially 
constant and water velocity is zero. Thus the largest eigenvalue ini- 
tially is 

ffiffiffiffiffiffi
gH

p
, and the local timestep s are computed by 

DtK ¼ a
hKffiffiffiffiffiffiffiffiffi
gHK

p ð25Þ

where HK is the average water depth over the element. As the sim- 
ulation progresses, the local timestep s may need to be adjusted 
based on the water velocity . In many cases 

ffiffiffiffiffiffi
gH

p

 junx þ vnyj

and the local timest eps can be fixed during the computa tion. For 
more challengin g application s, for example, modeling hurricane 
storm surges, this is not the case. Theref ore, at certain intervals dur- 
ing the computa tion, we may recomput e the local timestep s by 
DtK ¼ a
hK

kK
ð26Þ

where kK ¼ juK j þ
ffiffiffiffiffiffiffiffiffi
gHK

p
. Here juK j is the magnitu de of the cell aver- 

age of velocity over the elemen t K. The elemen ts are then redistr ib- 
uted among the levels on each processo r. That is, the number of 
levels �N and the ratio M is left fixed, but elements are allowed to 
move between levels, dependi ng on DtK .

3.2. Tidal flows in the Western North Atlantic Ocean 

The first problem we consider is that of tidal flow in the Wes- 
tern North Atlantic Ocean. The domain for this problem is pictured 
in Fig. 3 and consists of part of the Atlantic Ocean, the Caribbean 
Sea and the Gulf of Mexico. Tidal elevations are forced at the 
60�W meridian open boundary. We utilize a standard tidal formula 
consisting of 7 tidal components, three diurnal (K1;O1;Q 1) and four 
semidirunal (M2; S2;N2;K2). The data can be found in [31]; see also 
Table 1 in [32]. We also impose tidal potential as a body force with 
the same 7 components. The simulation is cold-star ted and the tide 
is ramped-up using a smooth hyperbolic tangent ramp function 
over a 5 day time period. Other paramete rs in the model are:

� Cfmin ¼ :0025
� Hbreak ¼ 1:0 m
� fh ¼ 10
� fc ¼ :33333

These paramete rs were obtained from [32].
The discretizatio n of the domain into a mesh consisting of 

98,635 elements and 52,774 nodes is plotted in Fig. 4.
Numerical studies comparing the RKDG SWE solution to tidal 

gauge data for this problem are given in [18]; there it was demon- 
strated that the DG method accurately reproduces measure d tidal 
data. Here we consider various LTS scenarios and compare to RKDG 
solutions with no LTS. These scenarios are representat ive of many 
numerica l experiments which have been performed in this study.
The details of three particular LTS cases are outlined in Table 1.
For example, LTS-Case 1 divides the domain into four timestepp ing 
groups or levels, with M ¼ 2 between each level. The smallest 
timestep Dtmin ¼ 2 s, thus the timesteps on each of the four levels 



Fig. 4. Western North Atlantic mesh.

Table 1
LTS parameter s for three different test cases.

Test 
case 

�N M Dtmin

(sec)
# Elements in each level 

1 4 2 2 436, 4456, 13468, 80005 
2 7 2 2 436, 4456, 13468, 19262, 21720, 26168,

12855 
3 4 4 2 4892, 32730, 60743 
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are 2, 4, 8 and 16 s, respectively. In the third column we see how 
many elements are initially in each timestepping group, based on 
the criteria discussed in Section 3.1. Note that for Case 1, the vast 
majority of elements take the largest timestep of 16 s. Therefore,
for Case 2, we chose �N ¼ 7 to allow elements to take even larger 
timesteps. In this case, elements can take a timestep as large as 
128 s. Case 3 differs in that we take M ¼ 4 and divide into 3 groups 
with timesteps of 2, 16 and 64 s. This distributes more elements 
among the latter two groups.

First, we examine whether LTS effects the accuracy of the solu- 
tion. We compare the solution with no LTS to the LTS-Case 1 solu- 
tion for a 10 day tidal simulatio n, to allow for the tide to fully 
ramp-up and to compute several tidal cycles. In Fig. 5, we compare 
the water elevation solution with no LTS with global timestep 
Dt ¼ 2:195 s to the solution obtained with LTS-Case 1, at four mea- 
surement stations along the eastern coast of the US In this figure
we are plotting the water elevation in meters vs. time in seconds 
over the 10 day simulation at specific points in the domain. These 
points are located near Boston, MA (71:05�W;42:36�NÞ, Charlesto n,
SC (79:93�W;32:78�N), Key West, FL (81:81�W;24:55�N), and Cor- 
pus Christi, TX (97:22�W;27:58�NÞ. We note that the solutions are 
virtually indistinguishab le, which indicates that LTS does not de- 
grade the solution. We have examined solutions for other LTS 
parameters and obtained very similar results.

Next we examine the parallel efficiency of the code with and 
without LTS. In this problem, the local timesteps did not vary so 
dramatically during the course of simulation to warrant a re-parti- 
tioning of the mesh, therefore for the results presente d here, the 
parallel partition is static. We will compare execution times for a
1 day simulation. All tests were performed on the Bevo2 1 cluster
at the Institute for Computationa l Enginee ring and Sciences at The 
Universit y of Texas at Austin. First, to set a benchma rk, we test the 
parallel efficiency of the code with no LTS. In Table 2 we see that 
the code exhibits near perfect speed-up to 32 cores. Beyond that 
the parallel performance begins to degrade. Therefore, in comparing 
the various LTS strategies with no LTS, we will focus on runs with 8,
16 and 32 cores.
1 Bevo2 is a 23 node compute cluste r made up of Dell PowerEdge servers tha
house 2x quad core 2.66 GHz Intel Xeon processors for a total of 184 processors. Each
node has 16 gigabytes of RAM, dual gigab it ether net ports, and a single port Mellanox
III Lx Infiniband adapter attached to a QLogic SilverStorm Infiniband 24 port switch
capable of up to 20 Gb/s.
t 
 
 
 

For the LTS method, to see an example of how the elements and 
groups are split among processors, we show in Table 3 the distribu- 
tion of elements among 8 processors (PEs) for LTS-Case 3. The 
number of elements per PE includes ghost elements. We also com- 
pute the total amount of ‘‘work’’ required on each PE to advance 
the solution over one time cycle from tn to tnþ1. This is obtained 
as follows for Case 3: the number of elements on level 1 requires 
16 timesteps to complete one time cycle, level 2 requires 4
timesteps , and level 3 requires 1 timestep. Therefore, on PE0, for 
example, the amount of work is 

16 � 701þ 4 � 5983þ 983 ¼ 36131

as seen in column 3 of the table. For the work to be distrib uted 
evenly among PEs this number should be roughly consta nt. We 
see in Table 3 that the work is fairly evenly distrib uted among the 
processo rs, with the maxim um variation on the order of 10%. We 
also remark that during simulati ons the elemen t timesteps are 
recomput ed every 1000 timesteps, based on the formula given in 
Section 3.1. This allows elemen ts to change timestepping levels 
during the simulation, and could effect the load balanci ng. How- 
ever, for the three LTS cases consider ed, very few elemen ts changed 
timestep ping levels during the course of the simulati ons, thus the 
workloa d per PE remained essentia lly constant.

The parallel performanc e for the three LTS test cases is given in 
Table 4. We first note that the parallel scaling is not as good as 
without LTS, even though the run times are substantially reduced 
for every case in comparison to the results given in Table 2. The 
parallel efficiency for LTS drops off substanti ally between 16 and 
32 PEs while no LTS still showed near optimal efficiency. The par- 
allel scaling of LTS is limited by several factors. The number of ele- 
ments on each level is not evenly distribut ed among PEs, due to 
locality constraints within METIS. Furthermore, even if the number 
of elements were evenly distribut ed, the computational efficiency
is limited by the surface-t o-volume ratio on each level on each 
PE. With LTS the surface-to-v olume ratios could be worse on each 
timestepp ing level than without LTS, meaning there is less compu- 
tation and more message passing at each level. We remark how- 
ever, that even with these limitations LTS on 32 cores (in the 
best case) was a factor of 1.5 faster in compute time than no LTS 
on 64 cores, with no appreciable difference observed in the 
solutions.

3.3. Hurricane Ike storm surge forecast 

One of the most challengi ng applications for coastal models is 
the simulation of storm surge due to hurricanes. In previous work,
we have described the application of the DG method, with exten- 
sions to include wetting and drying and internal barriers such as 
levees, to the modeling of storm surge in the Gulf of Mexico [19].
In this section, we describe the application of LTS to a typical storm 
surge event. In particular, we consider Hurricane Ike, which struck 
the upper Texas coast in 2008.

The track of Ike is seen in Fig. 6. The storm progressed through 
the Western North Atlantic, through the Caribbean Sea making 
landfall in Cuba, and moved across the Gulf of Mexico, finally
making a second landfall at Galveston, TX in the early morning of 



Fig. 5. Time history of water elevation comparing no LTS and LTS-Case 1. Units on the horizontal axis are seconds, and the vertical axis is in meters.

Table 2
Parallel performance and CPU times with no LTS for 1 day of simulation.

# Cores CPU time (min:s) Speedup 

8 86:42 –
16 44:31 1.95 
32 24:31 1.82 
64 17:38 1.39 

Table 3
Number of elements per PE on each timestepping level for 8 processors and the total 
work, computed as the total number of element-timesteps needed to advance the 
solution from time tn to tnþ1.

PE # Elements in each level Total work 

0 701 5983 983 36131 
1 144 6124 9926 36726 
2 288 3872 15652 35748 
3 468 4773 8457 35037 
4 617 5038 8943 38967 
5 1725 1497 3589 37177 
6 726 4404 8289 37521 
7 1555 2865 2647 38987 

Table 4
Parallel performance with LTS for 1 day of simulation.

LTS test case Number of PEs CPU time (min:s) Speedup 

1 8 30:43 
1 16 17:30 1.76 
1 32 12:10 1.44 

2 8 26:26 –
2 16 15:34 1.70 
2 32 11:38 1.34 

3 8 32:34 –
3 16 19:25 1.68 
3 32 13:52 1.40 
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September 13, 2008. By this time, Ike had high category 2 winds 
but had an unusuall y large wind field and produced a category 4
storm surge in an area east of Houston, TX. In [19], we compare d
results computed using the RKDG method with no LTS to data 
taken from another model, namely the Advanced Circulation or 
ADCIRC code, which was used to study Hurrican e Ike in [33]. In this 
section, we study a slightly different scenario, namely a ‘‘forecast’’
of Ike using approximat e wind fields generated from data obtained 
from the National Hurricane Center, and the Holland hurricane 
wind/pres sure model developed in [34]. In this wind model, the 
data given in the National Hurricane Center forecasts, namely the 
location of the eye of the storm, the central pressure, the radius- 
to-maxim um winds, and the maximum sustained wind speed,
are used to compute a vortex-shaped approximat ion of the 
hurricane wind and pressure field. This model is used in forecast 
simulatio ns of hurricane storm surges as described in [35], for 
estimating surge as hurricane s approach land. Here we use the 
so-called ‘‘best’’ track data; i.e, the actual hurricane track as 
measure d through the progression of the storm, as opposed to 
forecast tracks given during the event. The purpose of this exercise 
is to investigate the performanc e of the parallel DG code with LTS 
in this complex scenario, and compare to results generated using 
the no LTS, RKDG method described in [19].

The domain used in these simulations is similar to the domain 
used in the previous section, but with large sections of the Texas 
coast included; see Fig. 7. Here we include most sections of the 
coast which are less than 50 feet above sea level, since these 



Fig. 6. Track of Hurricane Ike, taken from http://www.wunderground.com.

Fig. 7. Western North Atlantic/Texas domain with bathymetry (m).
Fig. 8. Galveston Bay with bathymetry (m).
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regions could be affected in a storm event. The contours in the fig-
ure represent bathymetry measured in meters. In Fig. 8, we zoom 
in on the Galveston Bay region, the narrow channel in the figure
is the Houston Ship Channel, which connects the Port of Houston 
to the Gulf of Mexico. The land regions shown in the figure are also 
included in the computational domain.

We present results of simulatio ns of a 5 day period during the 
storm, beginning at 12:00 p.m. on September 9, 2008 and progress- 
ing through 12:00 p.m. on September 14, 2008. The finite element 
mesh for these simulations consisted of 2,628,757 elements and 
1,344,247 nodes, with most elements located in the Louisiana–
Texas inland regions and continental shelf. The mesh is highly 
graded, with element areas on the order of several square kilome- 
ters in the deeper oceanic basins, transitioning to element areas on 
the order of 2000 square meters in the coastal regions of Texas and 
Louisiana . For simulatio ns with no LTS, a global timestep of.5 s was 
used throughout the simulation. This was close to the minimum 
timestep computed using the CFL criteria (14) with velocity of zero.



Table 5
LTS parameters for scenarios 1 and 2 for Hurricane Ike.

LTS scenario �N �M Dt’s 

1 2 2 .5, 1.0 
2 4 2 .5, 1.0, 2.0, 4.0 

Fig. 10. Measurement locations X, Y and Z.

Fig. 9. Comparison of maximum water surface elevation in meters for Hurricane Ike 
forecast. No LTS (top), LTS (middle) Scenario 1 and the difference (bottom).

2 The Ranger system is comprised of 3936 16-way SMP compute nodes providing 
5,744 AMD Opteron processors for a total of 62,976 compute cores, 123 TB of total 
emory and 1.7 PB of raw global disk space. It has a theoretical peak performance of 

79 TFLOPS. All Ranger nodes are interconnected using InfiniBand technology in a
full-CLOS topology providing a 1 GB/s point-to-point bandwidth.
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We considered several LTS scenarios and present the results for 
two such scenarios. The parameters used in these scenarios are 
summarized in Table 5.

Scenario 1: Upon an initial check of the local CFL constraints on 
each element, we determined that only a small fraction of ele- 
ments required the minimum CFL timestep. The vast majority of 
elements had a local CFL timestep of 1 s or greater. Therefore,
LTS scenario 1 is a simple LTS simulation with two timesteppin g
levels (�N ¼ 2) and with �M ¼ 2. We ran the simulation on the Ran- 
ger parallel computer at the Texas Advanced Computing Center 2

with 800 processing cores. In this case, there were 65,727 element s
in timesteppi ng level 1 and 2,708,551 elements in timesteppi ng level 
2. These totals include elements in the overlap region between sub- 
domains , therefore some elements are counted more than once. The 
element s remained fixed within their timestep ping level throughou t
the 5 day simulation.

To compare the results of the LTS approach described above 
with no LTS, we look at two types of results, contours of maximum 
water elevation and hydrographs. The maximum water surface 
elevation is computed as 

gmaxðx; yÞ ¼ max
06t6T

gðx; y; tÞ:

This quantity is of interest since it indicate s where storm surge had 
the most impact over the course of the simulation . In Fig. 9, we 
compare the two solution s (LTS vs. no LTS) over the impact area 
(the upper Texas coast extendin g to southeas tern Louisiana ). We 
also compute d the difference between the two solutions. Overall 
the agreement betwee n the two solution s is quite close. There are 
a few small differences in the solution s in some isolated elemen ts,
prima rily in regions which experience wetting and drying. These 
differe nces are most likely due to sensitivit ies in the wettin g and 
drying algorithm used in the code.

We also compare hydrographs of solutions at three locations 
along the upper Texas coast, where actual instruments were de- 
ployed just before the storm, as described in [33]. These measure -
ment locations are labeled as X, Y and Z in Fig. 10 and are in the 
region of maximum storm surge. The LTS and no LTS solutions 
are plotted together in Fig. 11, where we observe that the solutions 
are virtually identical.

Scenario 2: Upon further examination of the local CFL time- 
steps, we found that most elements are able to take an even larger 
timestep than 1 s, at least based on an initial estimate. Therefore, in 
the second scenario we divided the domain into 4 timestepp ing 
levels with �M ¼ 2, with timesteps ranging from .50 to 4.00 s by fac- 
tors of 2. The number of elements in each group at time t ¼ 0 is gi- 
1
m
5



Fig. 11. Comparison of hydrographs for Hurricane Ike at measurement locations X, Y and Z.

Table 6
LTS scenario 1 data for Hurricane Ike simulation.

Timestep level Dt # Elements per level (t ¼ 0)

1 .5 56795 
2 1.0 60158 
3 2.00 521461 
4 4.0 2043731 

Fig. 12. Number of elements in each timestepping level vs. time for Hurricane Ike 
simulation.
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ven in Table 6. Note that the vast majority of elements can take a
4 s timestep. In this case, we recomputed the local timestep by 
checking the CFL condition at periodic intervals throughout the 
computati on. We chose to check and recompu te local timesteps 
roughly every .1 days during the simulation. Thus, during the 
course of the hurricane , the elements can shift between timestep 
groups. In Fig. 12 , we illustrate this further, where we show specif- 
ically how the number of elements within each timesteppin g level 
varies with time. We note that Hurricane Ike made landfall be- 
tween 3.5 and 4.5 days of simulatio n, and this is the time frame 
during which most elements are shifted among timestepp ing 
groups.

The results produced by the LTS solution were nearly identical 
to those produced in LTS scenario 1 described above. In Fig. 13 ,
we show the maximum elevation solution over the impact area,
and the differenc e between the LTS and no LTS solutions for this 
case. Overall the agreement between the two solutions is quite 
close. As noted above, there are a few small differences in the solu- 
tions in isolated elements , primarily in regions which experience 
wetting and drying.

We remark that the water elevation hydrographs at Stations X,
Y and Z are virtually identical to those observed in Fig. 11 and we 
do not reproduce them. In summary, the LTS method described 
herein captures the maximum surge compara ble to the RKDG 
method with no LTS. We also remark that any attempts to run 
the simulation with no LTS and a timestep larger than the global 
CFL timestep of .527 s blew up early in the simulation. Therefore,
experime ntally at least this was a tight bound on the maximum 
allowabl e timestep for the standard RKDG method.

Finally, we discuss the parallel performanc e of the model with 
and without LTS. Using 800 cores on Ranger; i.e., dividing the do- 
main into 800 subdomains, and using a global timestep of .5 s,
the total compute time for the no LTS case was 930 min. The same 
run using LTS scenario 1 took 586 min for a 37% reduction in wall 
clock time. LTS scenario 2 took 432 min for a 53% reduction in wall 
clock time. We also performed simulations of the no LTS case and 
LTS scenario 2 on 1600 cores. The run times were 555 min and 
240 min, respectively . Thus, no LTS exhibited a parallel speedup 



Fig. 13. Maximum water surface elevation in meters for Hurricane Ike forecast. LTS 
scenario 2 and the difference between LTS and no LTS solutions.
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factor of 1.67 and LTS scenario 2 a factor of 1.8 for this particular 
test case.

4. Conclusion 

In this paper, we have investiga ted the LTS approach described 
in [8] for some large-scale applicati ons in shallow water flows.
These applicati ons require the use of parallel computing, therefore 
we extended the serial LTS method described in [8] to utilize par- 
allel, distributed memory computing platforms. We have exam- 
ined the accuracy and efficiency of the method for standard tidal 
flow and for modeling hurricane storm surges. The method has 
proven to be robust even in extreme, wind-driven events.

The parallel performance of the LTS method for different 
choices of �N and �M is difficult to predict a priori . Since the element 
sizes in the meshes that we are given and the initial water depths 
both vary significantly over the domain, the local CFL constraints 
also vary significantly over the domain. Thus, it is difficult to deter- 
mine in advance the �N and �M which would optimize the parallel 
performanc e. Our approach has been to test various values of �N
and �M over fairly short time intervals, on the order of .1 days,
before performing a full multi-day simulation.

Future work will focus on exploring further parallel efficiency of 
the method for shallow water flows and other applications where 
there are distinct separations in spatial discretizatio n and temporal 
scales.
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