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A local discontinuous Galerkin method for Boussinesq–Green–Naghdi equations is presented 
and validated against experimental results for wave transformation over a submerged 
shoal. Currently Green–Naghdi equations have many variants. In this paper a numerical 
method in one dimension is presented for the Green–Naghdi equations based on rotational 
characteristics in the velocity field. Stability criterion is also established for the linearized 
Green–Naghdi equations for both the analytical problem and the numerical method. 
Verification is done against a linearized standing wave problem in flat bathymetry and 
h, p (denoted by K in this paper) error rates are plotted. Validation plots show good 
agreement of the numerical results with the experimental ones.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Surface water wave theory has been an evolving research topic where asymptotic models have been used to resolve 
wave characteristics. While the shallow water assumption is valid in regions where the characteristic wavelength exceeds 
a typical depth by orders of magnitude, Boussinesq-type equations have been used to model near-shore wave motion. 
The basic idea behind all the Boussinesq theories is the introduction of a polynomial representation of the velocity field 
in the vertical co-ordinate which reduces a 3D flow model to a 2D flow model. Most of these theories are based on 
an asymptotic extension of the additional shallow water physics into deeper water to arrive at inviscid, non-linear wave 
evolution equations. While many models [28,31,32], even though exhibiting good non-linear properties, have limited radius 
of convergence [24] and are restricted to a finite value of khb (k represents a typical wave-number; hb represents a typical 
depth), recently some Boussinesq theories [27] have exhibited very high radius of convergence. However, since almost 
all Boussinesq based models assume an irrotational flow field they are valid up to the breaking point. Since vortices are 
generated from wave breaking, any model based on irrotational flow will induce large errors in the velocity field.

An alternate approach to the computation of shallow water nonlinear dispersive waves lies in the Green–Naghdi
[19,34,36] formulation, where a polynomial structure for the velocity field is retained without any irrotational assump-
tions. Almost all Green–Naghdi based formulations have been developed in the shallow water limit, although researchers 
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Fig. 1. Domain showing bathymetry and surface elevation.

[38] have successfully extended the formulation to deeper waters. Recently, in [40], the authors developed the Green–
Naghdi formulation to arbitrary levels of approximation but also retained the Boussinesq scaling. Such a formulation can 
be naturally extended to model the surf-zone which is a highly energetic part of the near shore ocean where waves shoal, 
break and transmit energy to the shore [35,29,23]. Henceforth, in this paper, we refer to these equations as the R-GN equa-
tions. There are also water wave theories based on the Green–Naghdi approach that employ irrotational characteristics into 
the velocity formulation. Such systems have been known to provide accurate linear and non-linear dispersion [26,6], and 
their irrotational assumption brings it more in line with standard Boussinesq systems. We’ll refer to these equations as the
I-GN equations. Since our ultimate goal is to use Green–Naghdi equations to model surf-zone dynamics where we’ll need 
rotational features in the velocity fields to include turbulent/viscous stresses; we’ll mainly focus on the R-GN model. The 
numerical techniques developed for the R-GN equations will also apply to the I-GN equations.

While Green–Naghdi theory has been identified as a fairly accurate theory that captures non-linear dispersion, there 
aren’t many numerical methods that can be used to solve such equations in an arbitrary grid. Part of this is due to the 
nature of the Green–Naghdi equations which contain non-linear products of higher-order spatial derivatives and mixed 
spatio-temporal derivatives. In this paper, we investigate a discontinuous Galerkin method [9] to solve both the R-GN and 
I-GN equations described above. Even though the R-GN equations are in non-conservative form and contain higher order 
derivatives, by the use of the local discontinuous Galerkin approximation we can easily handle non-linear products of the 
derivatives. Moreover, discontinuous Galerkin methods are known to handle complex geometry and extend easily to higher 
dimensions. Although recently a discontinuous Galerkin (DG) based method has been developed for high order Boussinesq 
equations [17], at present there are no DG or finite element methods for Green–Naghdi based equations.

In Section 2, we present the physical model, i.e. the R-GN equations due to [40]. Section 3 is devoted to the numerical 
discretization of these equations using the discontinuous Galerkin method for the spatial approximation. We outline the DG 
method and comment on the linear and non-linear stability of such an approximation. Finally, we carry out the verification 
and validation test of our numerical method and conclude with a summary and future work.

2. Governing equations: R-GN equations

Usually, in water wave theory one works with the non-dimensional Euler equations for an incompressible fluid. A typical 
domain is show in Fig. 1. The continuity equation reduces to the free surface equation given by,

∂η

∂t
+ ∇ ·

η∫
−hb

udz = 0, (2.1)

where η = η(x, y, t) is the free surface. The non-dimensional momentum equations, in Cartesian co-ordinates, are given by

∂u

∂t
+ u · ∇u + w

∂u

∂z
+ ∇ P = 0. (2.2)

μ2 ∂ w

∂t
+ μ2u · ∇w + μ2 w

∂ w

∂z
+ ∂ P

∂z
+ g = 0, (2.3)

where ∇ = [∂/∂x, ∂/∂ y]T , u = [u, v]T and μ represents a dimensionless wave number. Integrating (2.3) from z to η, and 
assuming a zero gauge pressure at the free surface, we find

P (z) = μ2

η∫
z

∂ w

∂t
dz + μ2

η∫
z

u · ∇wdz + μ2

η∫
z

w
∂ w

∂z
dz + g(η − z). (2.4)

In accordance with the classical Boussinesq and Green–Naghdi theory, we follow the recipe outlined in [40] where an 
approximated velocity field given by
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u ≈ ū =
N∑

n=0

μβn un(x, y, t) fn(z)

is inserted into the equations above to get arbitrary levels of approximation. For the sake of completeness we outline the 
steps in constructing a Rotational Boussinesq–Green–Naghdi approximation of the Euler equations.

1. Define a level of wave approximation, O (μN ).
2. Insert the approximate velocity field into the free surface equation (2.1), retaining all the terms up to the desired level 

of approximation.
3. Insert the approximate velocity field into the pressure equation (2.4) to get P̄ .
4. Insert the approximate velocity field into the horizontal momentum equation (2.2). Integrate in weighted residual sense, 

using the N + 1 basis functions used in the approximated velocity field, i.e.

η∫
−hb

fm

(
∂ū

∂t
+ ū · ∇ū + w̄

∂ū

∂z
+ ∇ P̄

)
dz = 0, m = 0 . . . N (2.5)

where w̄ represents the approximate vertical velocity field which can be determined from the approximate horizontal 
velocity field [40].

In this paper we focus mainly on the O (μ2) equations. As derived in [40], the approximate velocity field is given by

ū = u0 + μ2u1 f1(q) + μ2u2 f2(q),

w̄ = −∇ · u0 Hq − u0 · ∇hb, (2.6)

where q is a sigma-type co-ordinate given by q = z+hb
hb+η and H = η + hb(x, y) is the total water depth. The convergence 

properties of such an expansion are discussed in [40]. Following the steps above, we end up with the free-surface evolution 
equation and the momentum equations to solve for η, u0, u1 and u2. u1, u2 terms can be thought of as an additional 
representation of the velocity field over the depth. In other words, keeping u0, u1 and u2 terms we are better able to 
resolve the variation of velocity field over the depth of the ocean. Moreover, by making these terms independent we are 
not imposing any irrotational assumptions on the velocity field. The surface elevation equation is given by,

η,t + ∇ ·
(

u0 H + μ2
2∑

m=1

um Hcm

)
= 0. (2.7)

The momentum equations are given by,

u0,t Hcm
1 + u0 · ∇u0 Hcm

2 + g∇ηHcm
3 + μ2

2∑
n=1

(
un,t Hcm

4 − unη,tcm
5

)

− μ2
[

1

2
∇(∇ · u0,t)H3cm

6 + ∇ · u0,t∇H H2cm
7 + ∇(u0,t · ∇hb)H2cm

8

+ u0,t · ∇hb∇ηHcm
9 − (∇ · u0,t)H2∇hbcm

10

]

+ μ2
2∑

n=1

[
(un · ∇u0 + u0 · ∇un)Hcm

11 − un∇ · (u0 H)cm
12

]
+ μ2 H2[(∇ · u0)

2 − u0 · ∇(∇ · u0)
](∇ηcm

13 + ∇hbcm
14

)
+ μ2

2
H3∇[

(∇ · u0)
2 − u0 · ∇(∇ · u0)

]
cm

15

− μ2 H∇ηu0 · ∇(u0 · ∇hb)cm
16 − μ2 H2∇[

u0 · ∇(u0 · ∇hb)
]
cm

17 = 0, ∀m ∈ [0,2], (2.8)

where all the coefficients cm
k are defined in Appendix A.

3. Numerical methods

We investigate a local discontinuous Galerkin (LDG) method [10,11,4] for the spatial discretization of the Green–Naghdi 
equations given by (2.7)–(2.8) for the R-GN equations. The resulting semi-discrete equations are then integrated in time 
using an explicit Runge–Kutta method to evolve the equations from suitable initial conditions. The discontinuous Galerkin 
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Methods (DG) are locally conservative, stable and high-order methods which can easily handle complex geometries. This 
feature has made the method attractive in applications to water wave theories [1,13,25,39,18,17]. In this paper we’ll only 
focus on the 1D formulation of the R-GN equations. The full 2D equations will be considered in future work.

Let Ω = [0, L] be the spatial domain. Define a partition

0 = x1/2 < x3/2 < . . . < x J+1/2 = L,

and define,

E j = [x j−1/2, x j−1/2],
E = {x j+1/2},
h j = x j+1/2 − x j−1/2,

h = max
j

h j, (3.1)

to be the finite element, set of boundary points, element size and the maximum element size respectively. Construct a set 
of test functions V K

h on the partition, consisting of piecewise polynomials of degree K :

V K
h = {

v : v|E j ∈ PK (E j) ∀ j = 1, . . . , J
}
. (3.2)

Let us denote,

v
(
x+

j+1/2

) = lim
ε→0+ v(x j+1/2 + ε),

v
(
x−

j+1/2

) = lim
ε→0+ v(x j+1/2 − ε).

Then, we can define the jump and average of v at the endpoints of E j as:[∣∣v(x j+1/2)
∣∣] = v

(
x−

j+1/2

) − v
(
x+

j+1/2

)
,{

v(x j+1/2)
} = 1

2

(
v
(
x−

j+1/2

) + v
(
x+

j+1/2

))
. (3.3)

For any v ∈ V K
h , we can write v as

v =
J∑

j=1

K∑
i=0

ṽ j
i φi(x), (3.4)

where {φi} is a basis for PK . In this paper we chose φi = Pi , where Pi is the normalized Legendre polynomial [21]. 
Given uh ∈ V K

h , all derivatives of uh are calculated in an LDG sense described below. Define:

λh = uh
x ,

B
(
λh, w

) = Luh (w),

where B : V K
h × V K

h →R is the bi-linear form and Luh : V K
h →R is the linear form given by

B
(
λh, w

) =
∑

j

(
λh, w

)
E j

,

Luh (w) = −
∑

j

(
uh, wx

)
E j

+ 〈
ûh,

[|w|]〉E , (3.5)

where w ∈ V K
h and ( , ) denotes the standard L2 inner product. In a similar fashion, we compute uh

xx , uh
xxx and so on. Looking 

ahead, let us define the following bi-linear form:

Bσ

(
uh, w

) =
∑

j

(
uh, w

)
E j

+ σ
〈[∣∣uh

∣∣], [|w|]〉E , (3.6)

where σ ≥ 0. Note, ûh = F (uh−, uh+) is the single valued flux function evaluated at the edges of E j . Various flux functions 
can be found in the DG literature. The simplest flux is the average flux given by:

F
(
u−

j+1/2, u+
j−1/2

) = {
u(x j+1/2)

}
. (3.7)

To calculate the inner products we define an affine mapping given by [21]:

x ∈ E j: x(ξ) = x j−1/2 + 1 + ξ

2
h j . (3.8)

This maps x 	→ [−1, 1], where we utilize the Gaussian quadrature formulae so that the integrals are evaluated exactly.
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3.1. Discretization of the R-GN equations

The R-GN equations (2.7)–(2.8) can be written as:

ϕ = Rhsη, (3.9a)

L[s0] = Rhsu0 , (3.9b)

s1 = Rhs1, (3.9c)

s2 = Rhs2, (3.9d)

where ϕ = ηt , s0 = u0,t , s1 = u1,t , s2 = u0,t ; and L is an elliptic operator given by A + B ∂
∂x − C ∂2

∂x2 , where A, B , C are:

A = H g̃0 − μ2hxηx H g̃0,

B = −μ2 H2 Hx g̃0 − μ2hb,x H2(g̃0 − s̃0) + μ2 H2hb,xs̃0,

C = μ2

2
H3(g̃0 − ν̃0). (3.10)

Rhsη , Rhsu0 , Rhs1 and Rhs2 are given in (A.2), (A.3), (A.6) and include non-linear products of derivatives of u0, u1, u2, s0
and η. g̃0, s̃0, ν̃0, g1, g2 are constants that depend on the type of function f (q) used in (2.6) and g is the non-dimensional 
gravitational constant. See Appendix A for the complete description of these terms. Note that (3.9b) is similar to the disper-
sive equation in the I-GN equations.

The weak formulation of the R-GN equations (3.9) is then to find:

ϕh ∈ V K
h ,

sh
0 ∈ V K

h ,

sh
1 ∈ V K

h ,

sh
2 ∈ V K

h ,

rh ∈ V K
h ,

ph ∈ V K
h , (3.11)

where rh , ph approximate s0,x and s0,xx respectively, such that,

Bσ

(
ϕh,χ

) = L1(χ), (3.12a)

Bs
(
sh

0,ψ
) +Br

(
rh,ψ

) +Bp
(−ph,ψ

) = L2(ψ), (3.12b)

Bσ

(
sh

1, φ
) = L3(φ), (3.12c)

Bσ

(
sh

2,ω
) = L4(ω), (3.12d)

where Bσ is defined in (3.6). Bs , Br and Bp are given by:

Bs
(
sh

0, w
) =

∑
j

(
Ash

0, w
)

E j
,

Br
(
rh, w

) =
∑

j

(
Brh, w

)
E j

,

Bp
(

ph, w
) =

∑
j

(
Cph, w

)
E j

, (3.13)

where A, B and C are defined in (3.10). To eliminate, rh and ph we define the following equations [2]:∑
j

(
rh, w

)
E j

=
∑

j

(−sh
0, wx

)
E j

+ 〈
ŝh

0,
[|w|]〉E ,

∑
j

(
ph, w

)
E j

=
∑

j

(−rh, wx
)

E j
+ 〈

r̂h,
[|w|]〉E − σ11

〈[∣∣sh
0

∣∣], [|w|]〉E . (3.14)

Here σ11 is a penalty term and w , χ , ψ , φ and ω ∈ V K . The linear forms are given by:
h
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L1(χ) =
∑

j

(
Rhsh

η,χ
)

E j
,

L2(ψ) =
∑

j

(
Rhsh

u0
,ψ

)
E j

,

L3(φ) =
∑

j

(
Rhsh

1, φ
)

E j
,

L4(ω) =
∑

j

(
Rhsh

2,ω
)

E j
. (3.15)

The constant σ11 is chosen as described in Eq. (3.31) to satisfy the linear stability and is discussed in the following sections. 
The time stepping algorithm then follows:

→ Given ηh , uh
0, uh

1 and uh
2 at tn

↪→ Compute all the spatial derivatives from (3.5).
↪→ Determine A, B and C from (3.10), and Rhsη , Rhsu0 , Rhs1 and Rhs2.
↪→ Compute ϕh = ηh

t from (3.12a).
↪→ Compute rh, ph in terms of sh

0 from (3.14). Then do the elliptic solve for sh
0 = uh

0,t from (3.12b) and update Rhs1 and 
Rhs2. This will involve the solution of a linear equation.

↪→ Compute sh
1 = uh

1,t and sh
2 = uh

2,t from (3.12c) and (3.12d) respectively.

→ Update ηh , uh
0, uh

1 and uh
2 from ϕh , sh

0, sh
1 and sh

2 respectively,

where each update is performed using a fourth order classical Runge–Kutta method. A similar strategy can be followed to 
solve the dispersive part of I-GN equations [6].

3.2. Boundary conditions

The boundary conditions in DG methods are generally imposed weakly. The most common boundary conditions that 
occur when we solve Green–Naghdi equations are wall boundary condition, transmissive boundary condition and periodic 
boundary conditions. Other specialized boundary conditions will be considered in future work where we will extend our 
model to include the shoreline, wave breaking, absorption etc. to make it into a surf-zone model.

1. Wall: For wall boundary conditions we take uext. = −uint. and Hext. = Hint. .
2. Transmissive: We take uext. = uint. and Hext. = Hint. .
3. Periodic: The domain can be thought to be wrapped around and the exterior edge at L corresponds to the interior edge 

at 0 of the domain.

Here ext. and int. refer to exterior and interior respectively.

3.3. Linear and non-linear stability

In this section we will perform a stability analysis of the linearized R-GN equations for a flat bathymetry hb . For the 
analytic problem we’ll carry out the analysis through Fourier expansion as detailed in [17]. The eigenspectra will be shown 
to be purely imaginary and bounded. We’ll also establish the flux criteria for the discrete problem by considering the stability 
of the numerical solution using the discontinuous Galerkin method. The linearized O (μ2) R-GN equations can be written 
as:

2∑
n=0

Amn(hb)un,t + [
Bm0(hb)u0,xt + Cm0(hb)u0,xxt

] + gmηx = 0, ∀m = 0 . . . 2.

ηt +
2∑

n=0

(
Dn(hb)un

)
,x = 0.

To keep our analysis simple we choose the shifted Legendre polynomials [40] in (2.6) which decouples u1 and u2 above and 
hence it is sufficient only to look at the following equation:

u0,t − c0h2
bu0,xxt + gηx = 0,

ηt + hbu0,x = 0. (3.16)

Note that by choosing the shifted Legendre polynomials in (2.6) the coefficient of u0,xt becomes 0.
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3.3.1. Linear stability of the analytic problem through Fourier analysis
We perform a Fourier stability analysis [17] assuming a harmonic variation in space, η(x, t) = η̂(t)eikx , u0(x, t) = û0(t)eikx . 

Inserting this into (3.16), we get:

Ut = Q U,

where U = [û0, η̂]T and Q = A−1 B where, A and B are given by:

A =
[

1 + c0h2
bk2 0

0 1

]

B =
[

0 −igk
ikhb 0

]

The eigenvalues of Q can be found to be

λ(Q ) = ±i

√√√√ g/hb

c0 + 1
(khb)2

To obtain a bound of the magnitude we look at limkhb→∞ |λ(Q )|. This gives us |λmax| = √
1/c0

√
g/hb , where c0 = 1/6.

3.3.2. Linear stability of the numerical method
Let us rewrite (3.16) as a system of first order (in space) equations:

r − u0,xt = 0, (3.17a)

u0,t − c0h2
br,x + gη,x = 0, (3.17b)

η,t + hbu0,x = 0. (3.17c)

For simplicity let us assume u(0) = u(L) = 0. Adding (3.17c) and (3.17b) and subtracting (3.17a) after multiplication by gη, 
hbu0 and c0h3

bu0,x respectively and integrating from 0 to L we get:

g(η,t, η) + hb(u0,t, u0) + c0h3
b(u0,xt, u0,x) = 0.

Hence, to show stability of the numerical method it is sufficient to show [12]

g
(
ηh

,t, η
h) + hb

(
uh

0,t, uh
0

) + c0h3
b

(
uh

0,xt, uh
0,x

) + Θ = 0,

where Θ is such that integrating in time we achieve the desired stability. In the following paragraphs we will show the 
discrete time stability of the linearized equations.

For simplicity let us drop all the coefficients and let u0 = u. Then, working with the discrete versions of (3.17a), (3.17b)
and (3.17c) our numerical method is given by(

rh, v
)
Ω

= (
uh

xt, v
)
Ω

(3.18)(
uh

t , w
)
Ω

= −(
rh, wx

)
Ω

+ 〈
r̂h,

[|w|]〉E − σ11
〈[∣∣uh

t

∣∣], [|w|]〉E + (
ηh, wx

)
Ω

− 〈
η̂h,

[|w|]〉E (3.19)(
ηh

t , p
)
Ω

= (
uh, px

)
Ω

− 〈
ûh,

[|p|]〉E (3.20)

where v, w, p ∈ V K
h . Let

v = uh
x ,

w = uh,

p = ηh.

Thus, for an element E j , we get,(
rh, uh

x

)
E j

= (
uh

xt, uh
x

)
E j

(3.21)(
uh

t , uh)
E j

= −(
rh, uh

x

)
E j

+ r̂huh
∣∣x j+1/2

x j−1/2
− σ11

[∣∣uh
t

∣∣]uh
∣∣x j+1/2

x j−1/2
+(

ηh, uh
x

)
E j

− η̂huh
∣∣x j+1/2

x j−1/2
(3.22)(

ηh
t , ηh)

E j
= (

uh, ηh
x

)
E j

− ûhηh
∣∣x j+1/2

x j−1/2
(3.23)

Hence, we get the following:(
ηh

t , ηh) + (
uh

t , uh) + (
uh

xt, uh
x

) + ΘE j = r̂huh
∣∣x j+1/2 (3.24)
E j E j E j x j−1/2
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where ΘE j is given by:

−
∫
E j

d
(
ηhuh) + η̂huh

∣∣x j+1/2

x j−1/2
+ ûhηh

∣∣x j+1/2

x j−1/2
+ σ11

[∣∣uh
t

∣∣]uh
∣∣x j+1/2

x j−1/2
(3.25)

Adding over the elements we get:(
ηh

t , ηh) + (
uh

t , uh) + (
uh

xt, uh
x

) + Θ = 〈
r̂h,

[∣∣uh
∣∣]〉

E , (3.26)

where Θ = I + II +B.T . We see that I , II are given by:

I =
∑
Ei

([∣∣uh
0

∣∣](η̂h − {
ηh}) + [∣∣ηh

∣∣](ûh
0 − {

uh
0

}))
,

II = σ11
〈[∣∣uh

t

∣∣], [∣∣uh
∣∣]〉

E .

The boundary terms B.T are given by,

−(
ηhuh

0

)−∣∣
L+

(
ηhuh

0

)+∣∣
0

+η̂h(uh
0

)−∣∣
L−η̂h(uh

0

)+∣∣
0

+ûh
0

(
ηh)−∣∣

L−ûh
0

(
ηh)+∣∣

0

Here, Ei represents the set of interior edges. From the above expressions it is easy to see that if we choose ûh
0 = {uh

0}, 
η̂h = {ηh} and ûh

0 = 0, η̂h = ηh±
at the boundaries I and B.T become zero. Thus to get the desired stability we have to 

bound 〈r̂h, [|uh|]〉E . Note that if uh were continuous in the domain then this term would be zero.
In the following paragraphs we will carry out the discrete time stability. Let us introduce some notation,

uh
xt[n] = uh

x[n] − uh
x [n − 1]

δt
uh

t [n] = uh[n] − uh[n − 1]
δt

(3.27)

where n is the current time level.
We can then find a lower bound for the LHS of Eq. (3.26) given by the following:

(
uh

xt[n], uh
x [n])

Ω
= 1

2δt

[∥∥uh
x[n]∥∥2

L2(Ω)
− ∥∥uh

x[n − 1]∥∥2
L2(Ω)

+ ∥∥uh
x[n] − uh

x[n − 1]∥∥2
L2(Ω)

]
(
uh

t [n], uh[n])
Ω

≥ 1

2δt

[∥∥uh[n]∥∥2
L2(Ω)

− ∥∥uh[n − 1]∥∥2
L2(Ω)

]
σ11

δt

〈[∣∣uh[n] − uh[n − 1]∣∣], [∣∣uh[n]∣∣]〉E ≥ σ11

2δt

[∥∥[∣∣uh[n]∣∣]∥∥2
L2(E)

− ∥∥[∣∣uh[n − 1]∣∣]∥∥2
L2(E)

]
For the RHS of Eq. (3.26) after dropping the index n, we can find an upper bound given by:〈

r̂h,
[∣∣uh

∣∣]〉
E ≤ ∥∥r̂h

∥∥
L2(E)

∥∥[∣∣uh
∣∣]∥∥

L2(E)
from Cauchy–Schwarz inequality

= σ
−1/2
11

∥∥r̂h
∥∥

L2(E)
σ

1/2
11

∥∥[∣∣uh
∣∣]∥∥

L2(E)
multiplying and dividing by σ

1/2
11

≤ 1

2

(
σ−1

11

ε1

∥∥r̂h
∥∥2

L2(E)
+ ε1σ

1
11

∥∥[∣∣uh
∣∣]∥∥2

L2(E)

)

≤ εσ−1
11

∥∥rh
∥∥

L2(Ω)

∥∥rh
∥∥

H1(Ω)
+ 1

2
ε1σ11

∥∥[∣∣uh
∣∣]∥∥2

L2(E)
trace inequality of the first term

≤ C1σ
−1
11 h−1

min

∥∥rh
∥∥2

L2(Ω)
+ 1

2
ε1σ11

∥∥[∣∣uh
∣∣]∥∥2

L2(E)
inverse inequality of the first term

≤ C1σ
−1
11 h−1

min

∥∥uh
xt

∥∥2
L2(Ω)

+ 1

2
ε1σ11

∥∥[∣∣uh
∣∣]∥∥2

L2(E)

= C1σ
−1
11 h−1

min

∥∥∥∥uh
x[n] − uh

x[n − 1]
δt

∥∥∥∥
2

L2(Ω)

+ 1

2
ε1σ11

∥∥[∣∣uh
∣∣]∥∥2

L2(E)

Here we used the trace inequality [7] given by:∥∥r̂h
∥∥

L2(E)
≤ Ct

Ω

∥∥rh
∥∥1/2

L2(Ω)

∥∥rh
∥∥1/2

H1(Ω)
(3.28)

and the inverse inequality [7]
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∥∥rh
∥∥

H1(E j)
≤ h−1

j C i
E j

∥∥rh
∥∥

L2(E j)
(3.29)

The trace constant Ct
Ω is known to be finite in regular meshes and the constant from inverse inequality C i

E j
is independent 

of h j .
Thus collecting all the terms from above, Eq. (3.26) at time level n becomes:

L1 ≤ 1

2
ε1σ11

∥∥[∣∣uh[n]∣∣]∥∥2
L2(E)

, (3.30)

where L1 is given by

L1 = 1

2δt

[∥∥uh[n]∥∥2
L2(Ω)

− ∥∥uh[n − 1]∥∥2
L2(Ω)

]
+ σ11

2δt

[∥∥[∣∣uh[n]∣∣]∥∥2
L2(E)

− ∥∥[∣∣uh[n − 1]∣∣]∥∥2
L2(E)

]
+ 1

2δt

[∥∥uh
x[n]∥∥2

L2(Ω)
− ∥∥uh

x[n − 1]∥∥2
L2(Ω)

+
(

1

2
− C1σ

−1
11 h−1

min

δt

)∥∥uh
x[n] − uh

x[n − 1]∥∥2
L2(Ω)

]
The above condition imposes the restrictions on σ11 for linear stability, i.e.

σ11 ≥ 2C1

hminδt
, (3.31)

where C1 contains the constants from inverse inequality and the trace inequality.
Thus summing over time from n = 1 to n = N and multiplying by δt throughout we get∥∥uh[N]∥∥2

L2(Ω)
+ ∥∥uh

x[N]∥∥2
L2(Ω)

+ 2σ11
∥∥[∣∣uh[N]∣∣]∥∥2

L2(E)
+ ΘN

≤ ∥∥uh[0]∥∥2
L2(Ω)

+ ∥∥uh
x[0]∥∥2

L2(Ω)
+ 2σ11

∥∥[∣∣uh[0]∣∣]∥∥2
L2(E)

+ δt

(
ε1σ11

N∑
n=1

∥∥[∣∣uh[n]∣∣]∥∥2
L2(E)

)
,

where ΘN is given by

ΘN = 2δt

(
1

2
− C1σ

−1
11 h−1

min

δt

) N∑
n=1

[∥∥uh
x [n] − uh

x[n − 1]∥∥2
L2(Ω)

]
(3.32)

Thus from discrete Gronwall’s inequality [3] we get the desired stability.

3.3.3. Comments on non-linear stability
The stability analysis for the complete non-linear equations is quite complicated and will be considered in future work. 

However, similar flux choices as derived above can be used in the non-linear equations. Hence, we take the average fluxes 
to calculate derivatives in the complete non-linear equations. The rotational velocity field characteristic of the Boussinesq–
Green–Naghdi equations gives a coupled system of u0, u1, u2 and η and hence makes it extremely challenging to construct 
a stable numerical scheme. To add additional stability we add jumps in the time derivatives of the solution variables which 
is reflected in the bi-linear forms (3.6). To justify this, consider the equation s1 = Rhs1 where s1 is the time derivative of u1. 
The Rhs1 terms contain non-linear products of higher order derivatives of u0. If we use first order polynomials to approxi-
mate third order derivatives, Rhs1 will be ill-resolved which in turn will incur errors in s1 and will cause instability as we 
update in time. Thus, instead of solving the weak form of s1 = Rhs1, we modify it as is given in (3.12) by choosing the 
bi-linear form described in (3.6). This modified weak form can be thought of as adding penalty to ϕ , s1 and s2 terms which 
are the time derivatives of η, u1 and u2 respectively. Since these variables are unknown at time of update we must solve 
a linear system for ϕ , s1 and s2 at every time step. Note that as we increase our polynomial order we resolve the right 
hand terms better but still small errors get amplified when long time integration is performed. The penalty parameter σ
is chosen to be a positive number. In order to remove aliasing errors that can arise out of insufficient quadrature [22] all 
our spatial integration involving polynomials are carried out exactly. However, in cases of extreme non-linearity high order 
polynomial approximation may still become unstable. In those cases additional stability through filtering may be needed. 
An excellent overview of such filters is given in [17,16].

Note that (2.7) is a first order hyperbolic equation in surface elevation (η). There are many ways to tackle the spatial 
derivatives in such an equation. However, it was observed that a standard treatment of the derivatives as is done in the 
discretization of hyperbolic problems proved to be unstable. In other words, since the momentum and surface elevation 
equations are coupled, all spatial derivatives must be discretized in a compatible way. In our case we found that treating the 
spatial derivatives of surface elevation equation as the product of standard non-conservative terms yielded the necessary 
stability. The usual flux scheme like the local Lax–Friedrichs etc., which are used to handle fluxes (in conservative forms) 
in hyperbolic equations, did not provide the necessary stability. We must point out that in the DG scheme proposed in this 
paper, polynomial order K = 0, i.e. approximating solutions using piecewise constants also resulted in an unstable solution.
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Fig. 2. L2 error convergence plots for the linearized equations.

4. Verification and validation

To verify our numerical method we consider a linear standing wave problem, where it is known that the mean water 
level defined by 1

L

∫ L
0 ηdx = 0 and an exact solution for flat bathymetry exists based on linear assumption [14]. We present h

and K error convergence rates for our verification. To validate our numerical model, we compare the numerical solution of 
R-GN equations against experimental results obtained for the transformation of a wave train over a trapezoidal shoal. Here, 
we use the data reported in [5] and [15]. Such a test has been a standard validation scheme for the numerical models based 
on Boussinesq and Green–Naghdi type wave models as it tests not only linear dispersion and shoaling but also non-linear 
shoaling and fissioning. We also validate our numerical method against a non-linear solitary wave reflection problem, with 
experimental results obtained from [33]. We use a polynomial order K = 1 in all our simulations.

4.1. Linear standing wave

The R-GN equations as such don’t have any known exact analytic solutions. However it is known that for horizontal 
bottoms [14], a linear standing wave solution exists. We choose a linear standing wave given by a/hb = 0.01, and impose 
wall boundary conditions and the following initial conditions:

η(x,0) = a cos kx,

u0(x,0), u1(x,0), u2(x,0) = 0, (4.1)

where a and k represent the amplitude and wave-number (2π/L) respectively. The domain L = 5 m. The linearized Boussi-
nesq equation for a standing wave admits an exact solution given by

η = a cos(kx) cos(σ t).

In Fig. 2 we plot the L2 error of the linearized R-GN equations like (3.16) but with monomial shape functions for the 
velocity expansion. We can immediately see the optimal K + 1 convergence for odd polynomial order and suboptimal K
convergence for even polynomial order whenever the penalty parameter σ11 is chosen to satisfy linear stability.

However, obtaining the convergence rates for the complete non-linear equations is quite cumbersome mainly because 
there are no known exact solutions for the non-linear R-GN equations and even constructing a manufactured solution is 
non-trivial. To study the convergence properties of the non-linear equations we use the initial conditions as above but for 
K = 1 we consider the true solution to be as given by the simulation run on K = 1, h = 1/8 and similarly for K = 2 we 
consider the true solution to be as given by K = 2, h = 1/8. We then get the h convergence plot by running the simulation 
for T = 1 seconds on grids of h = 1, 1/2, 1/4. The time step δt is given by δt = 1

2∗K+1 ∗ h
C where C is the linear wave 

speed [14]. Note that getting error convergence plots for K ≥ 3 is very tedious due to the elliptic solve required in each 
time step. Moreover, the condition number increases as h is refined and K is increased and hence getting a suitable CFL 
criteria for time stepping becomes challenging. In Fig. 3 we observe similar convergence rates as for the linear case.

4.2. Transformation of a wave train over a submerged shoal

In this experiment first performed in [5], a wave train propagates towards a submerged trapezoidal shoal. Linear behav-
ior is exhibited before the bar, while non-linear shoaling causes steepening as the waves interact with the slope. Complex 
multi-frequency waves are generated after the bar as bound harmonics are released in deeper water at the top of the 
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Fig. 3. Pointwise error convergence plots for the non-linearized equations.

Fig. 4. Initial configuration for validation case.

bar. As the waves propagate onto the front slope of the bar, nonlinear interactions transfer energy from the leading wave 
component to higher harmonics, causing the wave to become steeper. After the peak of the bar is reached and the bottom 
slope becomes negative, the nonlinear coupling of the higher harmonics with the fundamental wave becomes progres-
sively weaker, and, from higher to lower harmonics, each of the Fourier components are released as free waves with their 
own bound higher harmonics. Hence, this experiment tests both the linear dispersion (after the bar) and the non-linear 
characteristics of the model.

The initial wave train has a period of T p = 2.02 s and wave height 2a = 2 cm. The mean water depth is hb = 0.4 m. The 
initial configuration is shown in Fig. 4. A non-uniform grid is used where the grid spacing decreases linearly from h = 0.3 m
at x = 0 to h = 0.1 m at x = 12 and remains 0.1 m till x = 25 m. The CFL number is taken as 1/(2K + 1), where K is the 
polynomial order, and δt is calculated using the shallow water speed c = √

ghb . The numerical results are validated against 
the experimental test as shown in the plots in Fig. 5. Fig. 6 depicts the linear dispersion where the non-dimensional wave 
speed is plotted against the non-dimensional frequency [20]. The vertical dotted lines indicate the location of the frequency 
of the fundamental wave, of which the period is T1 = 2.02 s, and its harmonics with periods T2 = T1/2, T3 = T1/3 and 
so on. As the bound waves are released as free waves, they travel with their own speed which, in the linear limit, are 
represented by the intersection of the vertical lines T2, T3, etc. with the present model’s dispersion curve. As inferred from 
the plot, we don’t expect the O (μ2) model to give perfect agreement for the higher harmonics after the bar. This is reflected 
from the surface elevation plot at x = 19.0 m in Fig. 5. In Fig. 7 we compare the results from the R-GN model with the 
results from using a shallow water model at x = 17.3 m in the same grid and using the same polynomial order K = 1. As 
we can see we miss the dispersion characteristics when using a shallow water model. Moreover, to account for the sharp 
change in bathymetry we need to utilize a slope limiter [12]. Here we have used the simplest min-mod limiter. Hence, the 
shallow water results are a little dissipative.

4.3. Wave reflection of solitary wave from a vertical wall

Solitary wave reflection exhibits complex non-linear and dispersive phenomena and has been used as a validation case 
for numerous numerical models based on Boussinesq–Green–Naghdi equations. Experimental observations in [37,8,30] re-
vealed that solitary waves emerging from a collision, in addition to having experienced changes in their phases, were trailed 
by a dispersive wave train. Moreover, for large amplitudes, the maximum run-up was observed to be higher than those 
determined from linear theory.

In this numerical study we follow the numerical setup of [33]. The initial conditions are [6]:

η(x,0) = a sech2(κ(x − x0 − ct)
)
,

u0(x,0) = c

(
1 − hb

)
,

η + hb
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Fig. 5. Comparison of experimental and numerical surface elevation variation at different locations around the shoal.

u1(x,0) = u2(x,0) = 0,

κ =
√

3a

2hb
√

hb + a
,

c = √
g(hb + a).

The initial velocity is such that continuity is satisfied at t = 0 and the initial configuration is shown in Fig. 8. As the 
solitary wave moves closer to the wall where the reflection takes place, its amplitude as well as its phase velocity increases 
quite rapidly. When the wave crest reaches the wall, it doesn’t immediately reflect back. There is phase lag during which the 
amplitude increases to more than double the initial amplitude. This maximum run-up against a vertical wall is compared 
against experimental results of [30,8] reported in [33] in Fig. 9. A uniform grid of h = 0.5 is used and a polynomial order 
of K = 1 is taken. The numerical results agree well with the experimental data.

5. Conclusion

In this work we developed a new local discontinuous Galerkin finite element method to solve Green–Naghdi equations in 
modeling non-linear and dispersive water waves. We considered the numerical discretization scheme for the Green–Naghdi
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Fig. 6. Linear dispersion relationship as nondimensional wave speed vs. wave frequency. Vertical lines are waves with periods Tn = 2.02/n s.

Fig. 7. Comparison of R-GN model, shallow water model and experimental result at x = 17.3 m.

Fig. 8. Initial configuration for the validation case.
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Fig. 9. Maximum surface elevation vs. the initial amplitude.

Table A.1
Integrals based on the shape function.

gn = ∫
fndq rn = ∫

f ′
nqdq Gn = ∫

gndq
Rn = ∫

rndq φmn = ∫
fm fndq γmn = ∫

fm gndq
ρmn = ∫

fmrndq Γmn = ∫
fm Gndq Θmn = ∫

fm Rndq
θmn = ∫

fm gnqdq νm = ∫
q2 fmdq Sm = ∫

qfmdq
εmn = ∫

fm f ′
nqdq Ψmn = ∫

fm fnqdq Fmn = ∫
fmrnqdq

equations, namely the R-GN and remarked on developing a similar scheme based on the local discontinuous Galerkin 
method for the I-GN model.

A careful stability analysis based on the Fourier transformation was then carried out for the linearized R-GN equations. 
The eigenspectra was found to be complex and the magnitude was bounded. Flux criterion for the numerical method was 
then established from the stability analysis of the numerical method based on the discontinuous Galerkin framework and 
important bound on the penalty parameter was established to maintain linear stability. A general non-linear stability analysis 
has been left for future work, however, a few comments on achieving long time stability were also presented. In general, 
high order approximation for extremely non-linear cases need additional stability which may render the scheme inconsistent. 
However lower order approximations have been observed to be stable provided the correct bi-linear forms are used as 
defined in (3.6).

The final part consisted of verification and validation of the R-GN model. A linear standing wave in a flat bathymetry 
with known exact solution was used for the verification of the linearized equations. Pointwise error at x = L/2 was used to 
compare solutions with different mesh refinement and polynomial order for the complete non-linear R-GN equations. Error 
plots were shown to give optimal/sub-optimal h, K convergence rates. For validation, wave transformation over a submerged 
shoal and solitary wave reflection from a vertical wall were chosen and the numerical results show good agreement with the 
experimental values. Such validation schemes have been standard benchmarks to test not only linear dispersion properties 
but also complex non-linear transformations.

Although Green–Naghdi equations have been used to model complex non-linear and dispersive water wave character-
istics, the inclusion of non-linear products of higher order derivatives in non-conservative form has made it cumbersome 
for the development of numerical schemes in non-uniform grids. The present numerical method hopes to remove this dif-
ficulty in using Green–Naghdi based models for modeling near-shore phenomenon. Future work will include the complete 
2D equations, wave breaking, generation and absorption boundaries, shoreline theories and sediment transport to construct 
a true surf-zone model.
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Appendix A. R-GN equations in 1 and 2 dimensions

In this section, we’ll complete the description of the R-GN equations. As described in (2.6), the approximated veloc-
ity field is expanded in the shape functions fn(q), where q is a non-dimensional parameter that varies from 0 at the 
bottom to 1 at the surface elevation. Based on a given shape function fn(q), Table A.1 gives some useful integral defini-
tions [40].

Using these, we can define the constants introduced in (2.7) and (2.8).
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c1 = g1

c2 = g2

cm
1 = cm

2 = cm
3 = gm

cm
4 = φmn; cm

5 = εmn; cm
6 = gm − νm

cm
7 = gm; cm

8 = gm − Sm; cm
9 = gm; cm

10 = Sm

cm
11 = φmn; cm

12 = εmn; c13 = gm

cm
14 = gm − Sm; cm

15 = gm − νm; cm
16 = gm; cm

17 = gm − Sm (A.1)

where all the integrals defined in the table are evaluated at q = 1. For the 1D R-GN equations introduced in (3.9), we get 
the following terms:

Rhsη is given by:

−(
u0 H,x + u0,x H + μ2 g1u1 H,x + μ2 g1u1,x H + μ2 g2u2 H,x + μ2 g2u2,x H

)
(A.2)

Rhsu0 is given by:

−(
d0u0u0,x + e0u2

0,x + f0u0u0,xx + h0u0,xu0,xx + i0u0u0,xxx

+ j0u2
0 + k0u1u0,x + l0u0u1,x + n0u2u0,x + o0u0u2,x

+ p0u1u0 + q0u2u0 + r0u1 + t0u2 + v0 gη,x
)

(A.3)

Rhsu1 is given by:

−(
a1s0 + b1s0,x + c1s0,xx + d1u0u0,x + e1u2

0,x + f1u0u0,xx

+ h1u0,xu0,xx + i1u0u0,xxx + j1u2
0 + k1u1u0,x + l1u0u1,x

+ n1u2u0,x + o1u0u2,x + p1u1u0 + q1u2u0 + r1u1 + t1u2 + v1 gη,x
)

(A.4)

Rhsu2 is given by:

−(
a2s0 + b2s0,x + c2s0,xx + d2u0u0,x + e2u2

0,x + f2u0u0,xx

+ h2u0,xu0,xx + i2u0u0,xxx + j2u2
0 + k2u1u0,x + l2u0u1,x

+ n2u2u0,x + o2u0u2,x + p2u1u0 + q2u2u0 + r2u1 + t2u2 + v2 gη,x
)

(A.5)

Rhs1 and Rhs2 are given by:

Rhs1 = φ12Rhsu2 − φ22Rhsu1

φ12φ21 − φ22φ11

Rhs2 = φ21Rhsu1 − φ11Rhsu2

φ12φ21 − φ22φ11
(A.6)

For m = 0, the coefficients are given as:

dm = H gm − μ2 Hη,xhb,x g̃m + (3hb,xx)
(−μ2 H2(g̃m − S̃m)

)
em = μ2 H2η,x g̃m

fm = −μ2 H2(η,x g̃m + 2(g̃m − s̃m)hb,x
)

hm = +μ2

2
H3(g̃m − ν̃m)

im = −μ2

2
H3(g̃m − ν̃m)

jm = −μ2 Hη,xhb,xx g̃m − hb,xxxμ
2 H2(g̃m − S̃m)

km = μ2 H(−ε̃m1)

lm = 0

nm = μ2 H(−ε̃m2)

om = 0
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pm = −μ2 H,xε̃m1

qm = −μ2 H,xε̃m2

rm = −μ2η,t ε̃m1

tm = −μ2η,t ε̃m2

vm = H g̃m (A.7)

For m = 1, 2, the coefficients are given as:

am = H gm − μ2hb,xη,x H gm − μ2hb,xx H2(gm − Sm)

bm = −μ2 H2 H,x gm − μ2hb,x H(gm − Sm) + μ2 H2hb,x Sm

cm = −μ2

2
H3(gm − νm)

dm = H gm − μ2 Hη,xhb,x gm + (3hb,xx)
(−μ2 H2(gm − Sm)

)
em = μ2 H2η,x gm

fm = −μ2 H2(η,x gm + 2(gm − Sm)hb,x
)

hm = +μ2

2
H3(gm − νm)

im = −μ2

2
H3(gm − νm)

jm = −μ2 Hη,xhb,xx gm − hb,xxxμ
2 H2(gm − Sm)

km = μ2 H(φm1 − εm1)

lm = μ2 Hφm1

nm = μ2 H(φm2 − εm2)

om = μ2 Hφm2

pm = −μ2 H,xεm1

qm = −μ2 H,xεm2

rm = −μ2η,tεm1

tm = −μ2η,tεm2

vm = H gm (A.8)

See [40] for obtaining ˜ quantities of the integrals. We take μ = 1 in all our computations.
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