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[1] A large, unpredicted, water level increase appeared
along a substantial section of the western Louisiana and
northern Texas (LATEX) coasts 12–24 hrs in advance of
the landfall of Hurricane Ike (2008), with water levels in
some areas reaching 3 m above mean sea level. During
this time the cyclonic wind field was largely shore parallel
throughout the region. A similar early water level rise was
reported for both the 1900 and the 1915 Galveston
Hurricanes. The Ike forerunner anomaly occurred over a
much larger area and prior to the primary coastal surge
which was driven by onshore directed winds to the right of
the storm track. We diagnose the forerunner surge as being
generated by Ekman setup on the wide and shallow
LATEX shelf. The longer forerunner time scale additionally
served to increase water levels significantly in narrow‐
entranced coastal bays. The forerunner surge generated a
freely propagating continental shelf wave with greater than
1.4 m peak elevation that travelled coherently along the
coast to Southern Texas, and was 300 km in advance of the
storm track at the time of landfall. This was, at some
locations, the largest water level increase seen throughout
the storm, and appears to be the largest freely‐propagating
shelf wave ever reported. Ekman setup‐driven forerunners
will be most significant on wide, shallow shelves subject to
large wind fields, and need to be considered for planning
and forecasting in these cases. Citation: Kennedy, A. B.,
U. Gravois, B. C. Zachry, J. J. Westerink, M. E. Hope, J. C. Dietrich,
M. D. Powell, A. T. Cox, R. A. Luettich Jr., and R. G. Dean (2011),
Origin of the Hurricane Ike forerunner surge, Geophys. Res. Lett.,
38, L08608, doi:10.1029/2011GL047090.

1. Introduction

[2] Hurricane storm surge is usually attributed to the
strong onshore winds that accompany a hurricane near the
time of landfall. This primary coastal surge will peak around
the time of landfall, with the largest response found to the

right side of the storm track in the northern hemisphere.
Smaller increases in water level have also been observed up
to several days before landfall: these forerunners are well
known but typically have amplitudes under 1 m, and have
been thought relatively innocuous [Redfield and Miller,
1957; Bunpapong et al., 1985].
[3] However, residents along Hurricane Ike’s track faced

widespread inundation beginning at a full day before land-
fall [Standridge, 2010] while the center of the storm was
more than 400 km distant and winds were still shore‐parallel
and relatively weak. Although the National Hurricane
Center forecast a large primary surge at landfall, the fore-
runner was not addressed by forecasts or anticipated by
emergency personnel. Ike’s forerunner was similar to
descriptions of the historical 1900 and 1915 Galveston
Hurricanes [Garriott, 1900; Stewart, 1915; Cline, 1920],
both of which began flooding well before landfall when
winds were seemingly from the wrong heading (5, 7 ft (1.5,
2.1 m) forerunners at 12 hours prior to landfall, respec-
tively). Figure 1 shows that tracks for all three storms were
quite comparable, suggesting that the path of the storm
may be important. It should also be noted that all three
storms had large wind fields, which will also be shown to
be significant.

2. Hurricane Ike Forerunner Observations

[4] Two days prior to Ike’s landfall, the authors placed
nine wave/surge gauges in depths of 9–15 m along 370 km
of the Texas coast between Port Aransas (R) and the
Louisiana‐Texas border (Z), retrieving all but one gauge
post‐storm. (See Kennedy et al. [2010] for instrumentation
and deployment details.) Figure 1 shows locations for both
these gauges and NOAA tide stations used here, while
Figure 2 shows time series of the water level anomaly
(measured water level minus predicted tide) for Hurricane
Ike at these stations. The anomaly, with a maximum of 4.3 m
at the gauges shown, was largest on the right side of the
storm between gauges X and 8768094, a distance of around
150 km. Water levels peaked as Ike approached the coast-
line, and the surge at landfall thus fits well with prevailing
descriptions of storm surge being forced by cross‐shelf wind
stress.
[5] However, a large forerunner surge began to increase

strongly at 24 hours before landfall over much of the region.
At 15 hours before landfall, the water level anomaly was
2.2 m at gauge Z, which is 6 km offshore, and reached an
absolute shoreline elevation of 3.2 m NAVD88 (3.0 mMSL)
by 12 hours before landfall at USGS gauge GAL‐1 on what
is normally dry land [East et al., 2008] (Figure S1 of the
auxiliary material); this appears to be the largest forerunner
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ever reported in the literature, surpassing the previously‐
mentioned 1915 Galveston Hurricane [Cline, 1920].1 Winds
at these times were either shore‐parallel or slightly offshore
(Figure S1); thus, cross‐shore wind stresses did not force
the forerunner.
[6] Along the Texas coast to the south of the storm track,

the forerunner surge appeared to propagate as a slowly
dissipating free wave with crest anomaly exceeding 1.4 m
and average speed of 5–6 m/s, (Figure 2, line 2), and was by
the time of landfall 300km in advance of the storm center.
Propagating forerunner waves have been observed in
advance of a tropical cyclone with speeds of 400–600 km/
day (4.6–6.9 m/s) [Fandry et al., 1984], but never with such
large amplitude. Second and third smaller waves (lines 3,4)
propagate after the storm with speeds similar to the first
wave and periods of around 33 hours, making them sub-
inertial. Continental shelf wave speeds were computed to be
4.3 m/s and 8.0 m/s at gauges R and X using idealized
solutions [Pedlosky, 1990] – these bracket well the observed
speeds for lines 2–4. Thus, we identify lines 2–4 as sub-
inertial, barotropic, continental shelf waves, which have a
geostrophic balance between the alongshelf current veloci-
ties and surface elevations [Pedlosky, 1990]. Continental
shelf waves are nondispersive and are much slower than
barotropic Kelvin waves: a Kelvin wave with 6m/s speed
would require a depth of less than 4 m, which is not believ-
able. Similarly, Helmholtz seichingmodes [Bunpapong et al.,
1985] travel much faster than observed here. The continental
shelf wave of line 2 would appear to have the largest crest
elevations ever reported: typical crest‐trough heights for
freely propagating waves are cm to tens of cm. Some of the
largest reported in the literature are given by Fandry et al.
[1984] (∼75 cm), Thiebaut and Vennell [2010] (∼90 cm),
and Eliot and Pattiaratchi [2010] (∼63 cm). It should also
be noted that Morey et al. [2006] computed a crest height of
1.4 m for a forced topographic wave traveling parallel to
Hurricane Dennis.
[7] Potential forerunner explanations include inverse

barometric surge from lowered atmospheric pressures, wave

setup, large scale seiching modes, and Ekman setup. Baro-
metric effects are readily dismissed, as areas of low pressure
were still far offshore at the time of the forerunner. Breaking
wave setup plays a role, particularly near the shoreline.
However, simulations described in the next section with and
without wave effects showed only small differences (0.1–
0.33 m) at the gauges of Figure 2 [see also Bunya et al., 2010;
Dietrich et al., 2010, 2011]. Large scale seiching modes
arising from the sudden entrance of a hurricane into the Gulf
of Mexico have been proposed as the cause of forerunner
surge. These certainly exist with amplitudes of several tens
of cm [Bunpapong et al., 1985], and will affect in particular
very early water levels more than a day before landfall;
however, the observed forerunner is not Gulf‐wide but is
instead closely tied to the storm location and is again far too
large for this to be plausible.

3. Ekman Setup

[8] Ekman setup, due to an approximately geostrophic
balance between the Coriolis force acting on the along‐shelf
current and the across shelf pressure gradient [e.g., Freeman
et al., 1957], is the only process with the potential to pro-
duce the large forerunner observed during Ike. The Ekman
setup at the coast, hc, may be computed from across‐shelf
momentum equations as

�c ¼
Z

fV=g dx; ð1Þ

where x increases along a transect toward shore, f is the
Coriolis parameter, g is gravitational acceleration and V is
the depth‐averaged alongshelf velocity. Thus, a large Ekman
setup will be forced by strong winds generating rapid
alongshelf currents over a wide shelf: a depth‐averaged
current of 1 m/s at 30 degrees north latitude with the shore on
the right hand side would force a setup of 1.5 m on a 200 km
wide continental shelf. These numbers are plausible here
because of the wide and shallow LATEX shelf and, as will
be shown, Ike’s enormous wind field. We note that the

Figure 1. Bathymetry of LATEX shelf, with tracks of Hurricane Ike, and the 1900 and 1915 Galveston Hurricanes. (R‐Z)
rapidly installed gauges; (numbers) NOAA stations; (GAL‐1) temporary USGS gauge.

1Auxiliary materials are available in the HTML. doi:10.1029/
2011GL047090.
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bowl‐shaped LATEX coastline in Figure 1 allowed winds
to be approximately shore‐parallel over a long stretch of
coastline, even when the hurricane was quite distant. To the
right of landfall (positive distances in Figure 2), the fore-
runner appeared to be primarily a forced Ekman response
from winds on the shelf, while to the left of landfall it was
clearly a free wave as it passed through regions that never
experienced strong wind forcing.
[9] We investigate these processes through simulations

with the tightly‐coupled, depth‐averaged, SWAN + ADCIRC
wave and circulation model [Westerink et al., 2008; Bunya
et al., 2010; Zijlema, 2010; Dietrich et al., 2011], run on a
3,323,388 node unstructured grid with resolution to 30 m
in the nearshore. Wind forcing was taken from a H*Wind
post‐storm reconstruction embedded into a larger scale
wind field [Cox et al., 1995; Powell et al., 1998], which
combines all available wind observations into a common
marine framework at 10 m height. Though rated only a
Category 2 on the Saffir‐Simpson (SS) scale at landfall
with maximum winds of 95 knots (49 m/s), Ike’s wind field
was among the largest observed for a landfalling hurricane
in the Atlantic basin over the past thirty years. Tropical
storm strength winds extended 400 km from the center at
one day before landfall [0600 UTC, 12 Sept.] with an
integrated kinetic energy [Powell and Reinhold, 2007] of
130 TJ, surpassing SS Category 5 Hurricane Katrina’s peak
value of 117 TJ at 18 h before landfall.
[10] Figure 3a shows the reconstructed wind field at 15

hours prior to landfall, while Figure 3b shows the computed
water level anomaly. Winds at this time were close to shore‐
parallel, while the computed anomaly increased strongly
toward shore as expected from the geostrophic balance, and

exceeded 1.5 m. A strong, predominantly shore‐parallel,
current exceeding 1m/s was predicted in Figure 3c over
most of the shelf with the strongest currents in depths of 20–
80 m. Magnitudes decrease in shallower water because of
increased bed friction and lower wind speeds, and in greater
depths because of insufficient time to accelerate the entire
water column.
[11] The forerunner’s geostrophic nature may be shown

conclusively by recomputing the model surge without Cor-
iolis forcing and comparing the two simulations. Figure 3d
shows that, at 15 hours before landfall, there would have
been essentially no coastal surge over the region in the
absence of Coriolis forcing. This comparison removes all
doubt about the nature of the forerunner and may also be seen
in more detail in Animations S1 and S2.
[12] These effects are also apparent in the computed time

series of water level anomaly shown in Figure 4. At all
locations, the forerunner is large with Coriolis included but
vanishes without Coriolis forcing. Surge at Manchester
Houston (8770777), almost 40 km along shipping channels
from the head of Galveston Bay and 80 km from the open
Gulf of Mexico, shows more than a 2 m increase in peak
surge from Coriolis‐effects, and a near‐tripling of the
overall surge. This occurs because the longer time scale of
the forerunner filled Galveston Bay in advance of the pri-
mary surge, which had a duration of only 10–12 hours on
the open coast. With the Bay already filled, the localized
wind driven surge became even more catastrophic. This
increased surge in inland, narrow‐entranced, bays needs to
be accounted for in predictions and emergency planning. It
should be noted that agreement shown in Figure 4 although
good, is not perfect, with simulations underestimating

Figure 2. Water surface elevation anomaly over time (water surface elevation minus predicted tides) for open coast sta-
tions shown in Figure 1. Vertical offsets between the plots are proportional to the coastline distance between gauges. Line 1:
approximate shoreline position of Hurricane Ike. Line 2: propagating forerunner wave. Lines 3–4: propagating resurgence
waves. The red dashed line indicates 15 hours before landfall.
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somewhat the forerunner magnitude. From equation (1)
Ekman setup is dependent on current velocity, which is
itself sensitive in shallow depths to poorly known bottom
friction coefficients. Agreement could likely be improved

with further coefficient calibration; however here we use a
set of coefficients tested against a variety of storms. Addi-
tional processes neglected here, such as three dimensional
velocities, will also play a role but appear to be second order

Figure 3. (a) Data assimilated wind field; (b) computed water level anomaly; (c) computed depth‐averaged current field;
and (d) computed water level anomaly without Coriolis forcing, all at 15 hours before Hurricane Ike’s landfall. The 100 m
depth contour is given by the dashed line.

Figure 4. Time series of measured (black) and computed water level anomaly with (red) and without (blue) Coriolis forc-
ing. Gauge 8764227 (Atchafalaya Bay); Gauge Y (High Island); Gauge 8770777 (Manchester Houston); and Gauge S.
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effects when compared to the two‐dimensional geostrophic
balance presented above.

4. Discussion and Conclusions

[13] Although small forerunners are common, dangerous
forerunners are relatively infrequent and will arise from
large, strong, storms moving with moderate speed near
wide, shallow, and smooth shelves. In the United States, this
will certainly be important on the LATEX shelf, and is
likely to be important for much of the West Florida shelf.
Surge due to Ekman setup has already been noted here by
Morey et al. [2006] for Hurricane Dennis, and by Cline
[1920] for a storm that generated a forerunner “4.9 ft
(1.5 m) above any previous high water” on Tampa Bay.
[14] The forerunner surge during Hurricane Ike occurred

over a much larger area and prior to the primary coastal
surge which was driven by onshore directed winds to the
right of the storm track. It caused early flooding of coastal
regions, and allowed much more effective penetration of
flooding into narrow entranced bays – these had already
been filled by the forerunner before being subject to the
primary surge.
[15] A portion of the Hurricane Ike forerunner traveled

well in advance of the storm as a continental shelf wave that
appears to be the largest ever reported. Dangerous fore-
runners are most important for large storms and need to be
considered for these worst case scenarios.
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of Beaches and Coastal Systems, the USGS Center for Coastal Geology,
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